Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1969 Feb 1;53(2):157–182. doi: 10.1085/jgp.53.2.157

Lysine Transport across Isolated Rabbit Ileum

B G Munck 1, Stanley G Schultz 1
PMCID: PMC2202905  PMID: 5764744

Abstract

Lysine transport by in vitro distal rabbit ileum has been investigated by determining (a) transmural fluxes across short-circuited segments of the tissue; (b) accumulation by mucosal strips; and (c) influx from the mucosal solution across the brush border into the epithelium. Net transmural flux of lysine is considerably smaller than that of alanine. However, lysine influx across the brush border and lysine accumulation by mucosal strips are quantitatively comparable to alanine influx and accumulation. Evidence is presented that the "low transport capacity" of rabbit ileum for lysine is due to: (a) a carrier-mediated process responsible for efflux of lysine out of the cell across the serosal and/or lateral membranes that is characterized by a low maximal velocity; and (b) a high "backflux" of lysine out of the cell across the mucosal membrane. A possible explanation for the latter observation is discussed with reference to the relatively low Na dependence of lysine transport across the intestinal brush border.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Crane R. K. Na+ -dependent transport in the intestine and other animal tissues. Fed Proc. 1965 Sep-Oct;24(5):1000–1006. [PubMed] [Google Scholar]
  2. Curran P. F., Schultz S. G., Chez R. A., Fuisz R. E. Kinetic relations of the Na-amino acid interaction at the mucosal border of intestine. J Gen Physiol. 1967 May;50(5):1261–1286. doi: 10.1085/jgp.50.5.1261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. FOX M., THIER S., ROSENBERG L., SEGAL S. IONIC REQUIREMENTS FOR AMINO ACID TRANSPORT IN THE RAT KIDNEY CORTEX SLICE. I. INFLUENCE OF EXTRACELLULAR IONS. Biochim Biophys Acta. 1964 Jan 27;79:167–176. doi: 10.1016/0926-6577(64)90049-x. [DOI] [PubMed] [Google Scholar]
  4. Field M., Schultz S. G., Curran P. F. Alanine transport across isolated rabbit ileum. Biochim Biophys Acta. 1967 May 2;135(2):236–243. doi: 10.1016/0005-2736(67)90118-6. [DOI] [PubMed] [Google Scholar]
  5. Gilles-Baillien M., Schoffeniels E. Bioelectric potentials in the intestinal epithelium of the Greek tortoise. Comp Biochem Physiol. 1967 Oct;23(1):95–104. doi: 10.1016/0010-406x(67)90476-8. [DOI] [PubMed] [Google Scholar]
  6. HAGIHIRA H., LIN E. C., SAMIY A. H., WILSON T. H. Active transport of lysine, ornithine, arginine and cystine by the intestine. Biochem Biophys Res Commun. 1961 Apr 28;4:478–481. doi: 10.1016/0006-291x(61)90312-6. [DOI] [PubMed] [Google Scholar]
  7. LARSEN P. R., ROSS J. E., TAPLEY D. F. TRANSPORT OF NEUTRAL, DIBASIC AND N-METHYL-SUBSTITUTED AMINO ACIDS BY RAT INTESTINE. Biochim Biophys Acta. 1964 Nov 29;88:570–577. doi: 10.1016/0926-6577(64)90100-7. [DOI] [PubMed] [Google Scholar]
  8. MCCARTHY C. F., BORLAND J. L., Jr, LYNCH H. J., Jr, OWEN E. E., TYOR M. P. DEFECTIVE UPTAKE OF BASIC AMINO ACIDS AND L-CYSTINE BY INTESTINAL MUCOSA OF PATIENTS WITH CYSTINURIA. J Clin Invest. 1964 Aug;43:1518–1524. doi: 10.1172/JCI105028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. McLeod M. E., Tyor M. P. Transport of basic amino acids by hamster intestine. Am J Physiol. 1967 Jul;213(1):163–168. doi: 10.1152/ajplegacy.1967.213.1.163. [DOI] [PubMed] [Google Scholar]
  10. Munck B. G. Amino acid transport by the small intestine of the rat. The effect of amino acid pre-loading on the trans-intestinal amino acid transport by the everted sac preparation. Biochim Biophys Acta. 1965 Sep 27;109(1):142–150. doi: 10.1016/0926-6585(65)90098-1. [DOI] [PubMed] [Google Scholar]
  11. NEWEY H., SMYTH D. H. Cellular mechanisms in intestinal transfer of amino acids. J Physiol. 1962 Dec;164:527–551. doi: 10.1113/jphysiol.1962.sp007035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. ROBINSON J. W., FELBER J. P. A SURVEY OF THE EFFECT OF OTHER AMINO-ACIDS ON THE ABSORPTION OF L-ARGININE AND L-LYSINE BY THE RAT INTESTINE. Gastroenterologia. 1964;101:330–338. doi: 10.1159/000202330. [DOI] [PubMed] [Google Scholar]
  13. Rosenberg I. H., Coleman A. L., Rosenberg L. E. The role of sodium ion in the transport of amino acids by the intestine. Biochim Biophys Acta. 1965 May 25;102(1):161–171. doi: 10.1016/0926-6585(65)90210-4. [DOI] [PubMed] [Google Scholar]
  14. SCHULTZ S. G., ZALUSKY R. ION TRANSPORT IN ISOLATED RABBIT ILEUM. I. SHORT-CIRCUIT CURRENT AND NA FLUXES. J Gen Physiol. 1964 Jan;47:567–584. doi: 10.1085/jgp.47.3.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Schultz S. G., Curran P. F., Chez R. A., Fuisz R. E. Alanine and sodium fluxes across mucosal border of rabbit ileum. J Gen Physiol. 1967 May;50(5):1241–1260. doi: 10.1085/jgp.50.5.1241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Schultz S. G., Curran P. F., Wright E. M. Interpretation of hexose-dependent electrical potential differences in small intestine. Nature. 1967 Apr 29;214(5087):509–510. doi: 10.1038/214509a0. [DOI] [PubMed] [Google Scholar]
  17. Schultz S. G., Fuisz R. E., Curran P. F. Amino acid and sugar transport in rabbit ileum. J Gen Physiol. 1966 May;49(5):849–866. doi: 10.1085/jgp.49.5.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. WISEMAN G. Preferential transference of amino-acids from amino-acid mixtures by sacs of everted small intestine of the golden hamster (Mesocricetus auratus). J Physiol. 1955 Feb 28;127(2):414–422. doi: 10.1113/jphysiol.1955.sp005267. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES