Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1970 Feb 1;55(2):187–207. doi: 10.1085/jgp.55.2.187

Ion Metabolism in a Halobacterium

I. Influence of age of culture on intracellular concentrations

Margaret Ginzburg 1, Laura Sachs 1, B Z Ginzburg 1
PMCID: PMC2202994  PMID: 5413077

Abstract

Work is described on the changes in cell ions during growth of cultures of a species of Halobacterium isolated from the Dead Sea. Cell K concentration fell from 5.5 to 3.8 moles per kg cell water during the logarithmic phase of growth and maintained the latter value during the stationary phase (initial medium concentration, 7 mM). Cell Na and Cl followed a complex series of roughly parallel changes. The logarithmic phase ion concentrations were: Na, 1.0–2.3 moles/kg cell water; Cl, 2.3–3.7 moles/kg cell water. The final stationary phase values were: Na, 0.5 moles/kg cell water; Cl, 2.3–2.9 moles/kg cell water (medium NaCl concentration, 3.9 Molal). It is suggested that most of the K+ is bound within the cytoplasm.

Full Text

The Full Text of this article is available as a PDF (1,003.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BALLENTINE R., BURFORD D. D. Differential density separation of cellular suspensions. Anal Biochem. 1960 Nov;1:263–268. doi: 10.1016/0003-2697(60)90053-1. [DOI] [PubMed] [Google Scholar]
  2. Barber J. Measurement of the membrane potential and evidence for active transport of ions in Chlorella pyrenoidosa. Biochim Biophys Acta. 1968 Jun 11;150(4):618–625. doi: 10.1016/0005-2736(68)90051-5. [DOI] [PubMed] [Google Scholar]
  3. Bentzel C. J., Solomon A. K. Osmotic properties of mitochondria. J Gen Physiol. 1967 Jul;50(6):1547–1563. doi: 10.1085/jgp.50.6.1547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CHRISTIAN J. H., WALTHO J. A. Solute concentrations within cells of halophilic and non-halophilic bacteria. Biochim Biophys Acta. 1962 Dec 17;65:506–508. doi: 10.1016/0006-3002(62)90453-5. [DOI] [PubMed] [Google Scholar]
  5. Ginzburg M. The unusual membrane permeability of two halophilic unicellular organisms. Biochim Biophys Acta. 1969 Apr;173(3):370–376. doi: 10.1016/0005-2736(69)90002-9. [DOI] [PubMed] [Google Scholar]
  6. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  7. SCHULTZ S. G., SOLOMON A. K. Cation transport in Escherichia coli. I. Intracellular Na and K concentrations and net cation movement. J Gen Physiol. 1961 Nov;45:355–369. doi: 10.1085/jgp.45.2.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. SLAYMAN C. L., SLAYMAN C. W. Measurement of membrane potentials in Neurospora. Science. 1962 Jun 8;136(3519):876–877. doi: 10.1126/science.136.3519.876. [DOI] [PubMed] [Google Scholar]
  9. WICKSON-GINZBURG M., SOLOMON A. K. ELECTROLYTE METABOLISM IN HELA CELLS. J Gen Physiol. 1963 Jul;46:1303–1315. doi: 10.1085/jgp.46.6.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Zarlengo M. H., Schultz S. G. Cation transport and metabolism in Streptococcus fecalis. Biochim Biophys Acta. 1966 Oct 10;126(2):308–320. doi: 10.1016/0926-6585(66)90068-9. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES