Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1970 Mar 1;55(3):375–400. doi: 10.1085/jgp.55.3.375

Molecular Aspects of Polyene- and Sterol-Dependent Pore Formation in Thin Lipid Membranes

Vincent W Dennis 1, Nancy W Stead 1, Thomas E Andreoli 1
PMCID: PMC2203000  PMID: 4938534

Abstract

Amphotericin B modifies the permeability properties of thin lipid membranes formed from solutions containing sheep red cell phospholipids and cholesterol. At 10-6 M amphotericin B, the DC membrane resistance fell from ≈108 to ≈102 ohm-cm2, and the membranes became Cl--, rather than Na+-selective; the permeability coefficients for hydrophilic nonelectrolytes increased in inverse relationship to solute size, and the rate of water flow during osmosis increased 30-fold. These changes may be rationalized by assuming that the interaction of amphotericin B with membrane-bound sterol resulted in the formation of aqueous pores. N-acetylamphotericin B and the methyl ester of N-acetylamphotericin B, but not the smaller ring compounds, filipin, rimocidin, and PA-166, produced comparable permeability changes in identical membranes, and amphotericin B and its derivatives produced similar changes in the properties of membranes formed from phospholipid-free sterol solutions. However, amphotericin B did not affect ionic selectivity or water and nonelectrolyte permeability in membranes formed from solutions containing phospholipids and no added cholesterol, or when cholesterol was replaced by either cholesterol palmitate, dihydrotachysterol, epicholesterol, or Δ5-cholesten-3-one. Phospholipid-free sterol membranes exposed to amphotericin B or its derivatives were anion-selective, but the degree of Cl- selectivity varied among the compounds, and with the aqueous pH. The data are discussed with regard to, first, the nature of the polyene-sterol interactions which result in pore formation, and second, the functional groups on amphotericin B responsible for membrane anion selectivity.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andreoli T. E., Bangham J. A., Tosteson D. C. The formation and properties of thin lipid membranes from HK and LK sheep red cell lipids. J Gen Physiol. 1967 Jul;50(6):1729–1749. doi: 10.1085/jgp.50.6.1729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andreoli T. E., Dennis V. W., Weigl A. M. The effect of amphotericin B on the water and nonelectrolyte permeability of thin lipid membranes. J Gen Physiol. 1969 Feb;53(2):133–156. doi: 10.1085/jgp.53.2.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Andreoli T. E., Monahan M. The interaction of polyene antibiotics with thin lipid membranes. J Gen Physiol. 1968 Aug;52(2):300–325. doi: 10.1085/jgp.52.2.300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Andreoli T. E., Tieffenberg M., Tosteson D. C. The effect of valinomycin on the ionic permeability of thin lipid membranes. J Gen Physiol. 1967 Dec;50(11):2527–2545. doi: 10.1085/jgp.50.11.2527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cass A., Finkelstein A. Water permeability of thin lipid membranes. J Gen Physiol. 1967 Jul;50(6):1765–1784. doi: 10.1085/jgp.50.6.1765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cope A. C., Burrows E. P., Derieg M. E., Moon S., Wirth W. D. Rimocidin. I. Carbon skeleton, partial structure, and absolute configuration at C-27. J Am Chem Soc. 1965 Dec 5;87(23):5452–5460. doi: 10.1021/ja00951a036. [DOI] [PubMed] [Google Scholar]
  7. Everitt C. T., Redwood W. R., Haydon D. A. Problem of boundary layers in the exchange diffusion of water across bimolecular lipid membranes. J Theor Biol. 1969 Jan;22(1):20–32. doi: 10.1016/0022-5193(69)90077-0. [DOI] [PubMed] [Google Scholar]
  8. Finkelstein A., Cass A. Effect of cholesterol on the water permeability of thin lipid membranes. Nature. 1967 Nov 18;216(5116):717–718. doi: 10.1038/216717a0. [DOI] [PubMed] [Google Scholar]
  9. Finkelstein A., Cass A. Permeability and electrical properties of thin lipid membranes. J Gen Physiol. 1968 Jul 1;52(1):145–172. [PMC free article] [PubMed] [Google Scholar]
  10. HUANG C., WHEELDON L., THOMPSON T. E. THE PROPERTIES OF LIPID BILAYER MEMBRANES SEPARATING TWO AQUEOUS PHASES: FORMATION OF A MEMBRANE OF SIMPLE COMPOSITION. J Mol Biol. 1964 Jan;8:148–160. doi: 10.1016/s0022-2836(64)80155-8. [DOI] [PubMed] [Google Scholar]
  11. Hanai T., Haydon D. A., Taylor J. The influence of lipid composition and of some adsorbed proteins on the capacitance of black hydrocarbon membranes. J Theor Biol. 1965 Nov;9(3):422–432. doi: 10.1016/0022-5193(65)90041-x. [DOI] [PubMed] [Google Scholar]
  12. Lippe C. Urea and thiourea permeabilities of phospholipid and cholesterol bilayer membranes. J Mol Biol. 1969 Feb 14;39(3):669–672. doi: 10.1016/0022-2836(69)90152-1. [DOI] [PubMed] [Google Scholar]
  13. Tien H. T. Black lipid membranes in aqueous media: interfacial free energy measurements and effect of surfactants on film formation and stability. J Phys Chem. 1967 Oct;71(11):3395–3401. doi: 10.1021/j100870a006. [DOI] [PubMed] [Google Scholar]
  14. Tien H. T., Diana A. L. Bimolecular lipid membranes: a review and a summary of some recent studies. Chem Phys Lipids. 1968 Feb;2(1):55–101. doi: 10.1016/0009-3084(68)90035-2. [DOI] [PubMed] [Google Scholar]
  15. Tien H. T., Diana A. L. Black lipid membranes in aqueous media: the effect of salts on electrical properties. J Colloid Interface Sci. 1967 Jul;24(3):287–296. doi: 10.1016/0021-9797(67)90253-6. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES