Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1970 Mar 1;55(3):297–308. doi: 10.1085/jgp.55.3.297

The Sodium-Alanine Interaction in Rabbit Ileum

Effect of alanine on sodium fluxes

Peter F Curran 1, Jean Jacques Hajjar 1, I M Glynn 1
PMCID: PMC2203001  PMID: 5520504

Abstract

The interaction between Na transfer and alanine transfer across the mucosal border of rabbit ileum has been studied further by examining the effect of alanine on Na movement. Studies on strips of mucosa treated with ouabain showed that net Na movements against a Na concentration difference could be caused by a concentration difference of alanine. Na extrusion from mucosal cells was demonstrated when cellular alanine concentration exceeded that in the external medium. Conversely, the cells took up Na against a concentration difference when external alanine concentration was greater than cellular concentration. Unidirectional Na efflux from the cells toward the mucosal solution was increased by loading the cells with alanine. The relation between the increment in Na efflux and alanine efflux was approximately that predicted by the model of Curran et al. (reference 2) for the Na-alanine interaction at the mucosal border of the cells. The results offer further indication that the transport system is reversible and symmetrical.

Full Text

The Full Text of this article is available as a PDF (691.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chez R. A., Palmer R. R., Schultz S. G., Curran P. F. Effect of inhibitors on alanine transport in isolated rabbit ileum. J Gen Physiol. 1967 Nov;50(10):2357–2375. doi: 10.1085/jgp.50.10.2357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Crane R. K. Na+ -dependent transport in the intestine and other animal tissues. Fed Proc. 1965 Sep-Oct;24(5):1000–1006. [PubMed] [Google Scholar]
  3. Curran P. F., Schultz S. G., Chez R. A., Fuisz R. E. Kinetic relations of the Na-amino acid interaction at the mucosal border of intestine. J Gen Physiol. 1967 May;50(5):1261–1286. doi: 10.1085/jgp.50.5.1261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gilles-Baillien M., Schoffeniels E. Site of action of L-alanine and D-glucose on the potential difference across the intestine. Arch Int Physiol Biochim. 1965 Mar;73(2):355–357. doi: 10.3109/13813456509084257. [DOI] [PubMed] [Google Scholar]
  5. Hajjar J. J., Lamont A. S., Curran P. F. The sodium-alanine interaction in rabbit ileum. Effect of sodium on alanine fluxes. J Gen Physiol. 1970 Mar;55(3):277–296. doi: 10.1085/jgp.55.3.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Schultz S. G., Fuisz R. E., Curran P. F. Amino acid and sugar transport in rabbit ileum. J Gen Physiol. 1966 May;49(5):849–866. doi: 10.1085/jgp.49.5.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Wright E. M. The origin of the glucose dependent increase in the potential difference across the tortoise small intestine. J Physiol. 1966 Jul;185(2):486–500. doi: 10.1113/jphysiol.1966.sp007998. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES