Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1970 Mar 1;55(3):359–374. doi: 10.1085/jgp.55.3.359

Ionic Permeability of Thin Lipid Membranes

Effects of n-alkyl alcohols, polyvalent cations, and a secondary amine

John Gutknecht 1, D C Tosteson 1
PMCID: PMC2203006  PMID: 5535355

Abstract

Ultrathin (black) lipid membranes were made from sheep red cell lipids dissolved in n-decane. The presence of aliphatic alcohols in the aqueous solutions bathing these membranes produced reversible changes in the ionic permeability, but not the osomotic permeability. Heptanol (8 mM), for example, caused the membrane resistance (Rm) to decrease from >108 to about 105 ohm-cm2 and caused a marked increase in the permeability to cations, especially potassium. In terms of ionic transference numbers, deduced from measurements of the membrane potential at zero current, T cat/T Cl increased from about 6 to 21 and T K/T Na increased from about 3 to 21. The addition of long-chain (C8ndash;C10) alcohols to the lipid solutions from which membranes were made produced similar effects on the ionic permeability. A plot of log Rm vs. log alcohol concentration was linear over the range of maximum change in Rm, and the slope was -3 to -5 for C2 through C7 alcohols, suggesting that a complex of several alcohol molecules is responsible for the increase in ionic permeability. Membrane permselectivity changed from cationic to anionic when thorium or ferric iron (10-4 M) was present in the aqueous phase or when a secondary amine (Amberlite LA-2) was added to the lipid solutions from which membranes were made. When membranes containing the secondary amine were exposed to heptanol, Rm became very low (103–104 ohm-cm2) and the membranes became perfectly anion-selective, developing chloride diffusion potentials up to 150 mv.

Full Text

The Full Text of this article is available as a PDF (955.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARMSTRONG C. M., BINSTOCK L. THE EFFECTS OF SEVERAL ALCOHOLS ON THE PROPERTIES OF THE SQUID GIANT AXON. J Gen Physiol. 1964 Nov;48:265–277. doi: 10.1085/jgp.48.2.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andreoli T. E., Bangham J. A., Tosteson D. C. The formation and properties of thin lipid membranes from HK and LK sheep red cell lipids. J Gen Physiol. 1967 Jul;50(6):1729–1749. doi: 10.1085/jgp.50.6.1729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Andreoli T. E., Dennis V. W., Weigl A. M. The effect of amphotericin B on the water and nonelectrolyte permeability of thin lipid membranes. J Gen Physiol. 1969 Feb;53(2):133–156. doi: 10.1085/jgp.53.2.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Andreoli T. E., Monahan M. The interaction of polyene antibiotics with thin lipid membranes. J Gen Physiol. 1968 Aug;52(2):300–325. doi: 10.1085/jgp.52.2.300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Andreoli T. E., Tieffenberg M., Tosteson D. C. The effect of valinomycin on the ionic permeability of thin lipid membranes. J Gen Physiol. 1967 Dec;50(11):2527–2545. doi: 10.1085/jgp.50.11.2527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  7. BRADLEY L. B., JACOB M., JACOBS E. E., SANADI D. R. Uncoupling of oxidative phosphorylation by cadmium ion. J Biol Chem. 1956 Nov;223(1):147–156. [PubMed] [Google Scholar]
  8. Bangham A. D. Membrane models with phospholipids. Prog Biophys Mol Biol. 1968;18:29–95. doi: 10.1016/0079-6107(68)90019-9. [DOI] [PubMed] [Google Scholar]
  9. Bangham A. D., Standish M. M., Miller N. Cation permeability of phospholipid model membranes: effect of narcotics. Nature. 1965 Dec 25;208(5017):1295–1297. doi: 10.1038/2081295a0. [DOI] [PubMed] [Google Scholar]
  10. Diamond J. M., Wright E. M. Biological membranes: the physical basis of ion and nonelectrolyte selectivity. Annu Rev Physiol. 1969;31:581–646. doi: 10.1146/annurev.ph.31.030169.003053. [DOI] [PubMed] [Google Scholar]
  11. EISENMAN G. Cation selective glass electrodes and their mode of operation. Biophys J. 1962 Mar;2(2 Pt 2):259–323. doi: 10.1016/s0006-3495(62)86959-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Eisenman G., Sandblom J. P., Walker J. L., Jr Membrane structure and ion permeation. Study of ion exchange membrane structure and function is relevant to analysis of biological ion permeation. Science. 1967 Feb 24;155(3765):965–974. doi: 10.1126/science.155.3765.965. [DOI] [PubMed] [Google Scholar]
  13. Finkelstein A., Cass A. Permeability and electrical properties of thin lipid membranes. J Gen Physiol. 1968 Jul 1;52(1):145–172. [PMC free article] [PubMed] [Google Scholar]
  14. HUNTER F. R. The effect of n-butyl alcohol on the permeability of erythrocytes to non-electrolytes. J Cell Comp Physiol. 1961 Dec;58:203–216. doi: 10.1002/jcp.1030580302. [DOI] [PubMed] [Google Scholar]
  15. Haydon D. A., Taylor J. The stability and properties of bimolecular lipid leaflets in aqueous solutions. J Theor Biol. 1963 May;4(3):281–296. doi: 10.1016/0022-5193(63)90007-9. [DOI] [PubMed] [Google Scholar]
  16. Hunter F. R., George J., Ospina B. Possible carriers in erythrocytes. J Cell Physiol. 1965 Jun;65(3):299–311. doi: 10.1002/jcp.1030650303. [DOI] [PubMed] [Google Scholar]
  17. Kilbourn B. T., Dunitz J. D., Pioda L. A., Simon W. Structure of the K+ complex with nonactin, a macrotetrolide antibiotic possessing highly specific K+ transport properties. J Mol Biol. 1967 Dec 28;30(3):559–563. doi: 10.1016/0022-2836(67)90370-1. [DOI] [PubMed] [Google Scholar]
  18. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  19. MOORE J. W., ULBRICHT W., TAKATA M. EFFECT OF ETHANOL ON THE SODIUM AND POTASSIUM CONDUCTANCES OF THE SQUID AXON MEMBRANE. J Gen Physiol. 1964 Nov;48:279–295. doi: 10.1085/jgp.48.2.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Maddy A. H. The properties of the protein of the plasma membrane of ox erythrocytes. Biochim Biophys Acta. 1966 Mar 28;117(1):193–200. doi: 10.1016/0304-4165(66)90166-8. [DOI] [PubMed] [Google Scholar]
  21. Mueller P., Rudin D. O. Resting and action potentials in experimental bimolecular lipid membranes. J Theor Biol. 1968 Feb;18(2):222–258. doi: 10.1016/0022-5193(68)90163-x. [DOI] [PubMed] [Google Scholar]
  22. Nelson G. J. Studies on the lipids of sheep red blood cells. I. Lipid composition in low and high potassium red cells. Lipids. 1967 Jan;2(1):64–71. doi: 10.1007/BF02532003. [DOI] [PubMed] [Google Scholar]
  23. Nelson G. J. Studies on the lipids of sheep red blood cells. II. The incorporation of phosphorus into phospholipids of HK and LK cells. Lipids. 1968 May;3(3):267–274. doi: 10.1007/BF02531200. [DOI] [PubMed] [Google Scholar]
  24. Pagano R., Thompson T. E. Spherical lipid bilayer membranes: electrical and isotopic studies of ion permeability. J Mol Biol. 1968 Nov 28;38(1):41–57. doi: 10.1016/0022-2836(68)90127-7. [DOI] [PubMed] [Google Scholar]
  25. Papahadjopoulos D. Surface properties of acidic phospholipids: interaction of monolayers and hydrated liquid crystals with uni- and bi-valent metal ions. Biochim Biophys Acta. 1968 Sep 17;163(2):240–254. doi: 10.1016/0005-2736(68)90103-x. [DOI] [PubMed] [Google Scholar]
  26. Rega A. F., Weed R. I., Reed C. F., Berg G. G., Rothstein A. Changes in the properties of human erythrocyte membrane protein after solubilization by butanol extraction. Biochim Biophys Acta. 1967 Oct 23;147(2):297–312. doi: 10.1016/0005-2795(67)90408-4. [DOI] [PubMed] [Google Scholar]
  27. Rothfield L., Finkelstein A. Membrane biochemistry. Annu Rev Biochem. 1968;37:463–496. doi: 10.1146/annurev.bi.37.070168.002335. [DOI] [PubMed] [Google Scholar]
  28. Seufert W. D. Induced permeability changes in reconstituted cell membrane structure. Nature. 1965 Jul 10;207(993):174–176. doi: 10.1038/207174a0. [DOI] [PubMed] [Google Scholar]
  29. Shean G. M., Sollner K. Carrier mechanisms in the movement of ions across porous and liquid ion exchanger membranes. Ann N Y Acad Sci. 1966 Jul 14;137(2):759–776. doi: 10.1111/j.1749-6632.1966.tb50198.x. [DOI] [PubMed] [Google Scholar]
  30. Tien H. T., Diana A. L. Bimolecular lipid membranes: a review and a summary of some recent studies. Chem Phys Lipids. 1968 Feb;2(1):55–101. doi: 10.1016/0009-3084(68)90035-2. [DOI] [PubMed] [Google Scholar]
  31. Tosteson D. C., Andreoli T. E., Tieffenberg M., Cook P. The effects of macrocyclic compounds on cation transport in sheep red cells and thin and thick lipid membranes. J Gen Physiol. 1968 May 1;51(5):373–384. [PMC free article] [PubMed] [Google Scholar]
  32. Tosteson D. C. Effect of macrocyclic compounds on the ionic permeability of artificial and natural membranes. Fed Proc. 1968 Nov-Dec;27(6):1269–1277. [PubMed] [Google Scholar]
  33. Tosteson D. C. Electrolyte composition and transport in red blood cells. Fed Proc. 1967 Nov-Dec;26(6):1805–1812. [PubMed] [Google Scholar]
  34. Wright E. M., Diamond J. M. Effects of pH and polyvalent cations on the selective permeability of gall-bladder epithelium to monovalent ions. Biochim Biophys Acta. 1968 Aug;163(1):57–74. doi: 10.1016/0005-2736(68)90033-3. [DOI] [PubMed] [Google Scholar]
  35. Zwaal R. F., van Deenen L. L. Protein patterns of red cell membranes from different mammalian species. Biochim Biophys Acta. 1968 Aug;163(1):44–49. doi: 10.1016/0005-2736(68)90031-x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES