Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1970 Apr 1;55(4):497–523. doi: 10.1085/jgp.55.4.497

Subthreshold Behavior and Phenomenological Impedance of the Squid Giant Axon

A Mauro 1, F Conti 1, F Dodge 1, R Schor 1
PMCID: PMC2203007  PMID: 5435782

Abstract

The oscillatory behavior of the cephalopod giant axons in response to an applied current has been established by previous investigators. In the study reported here the relationship between the familiar "RC" electrotonic response and the oscillatory behavior is examined experimentally and shown to be dependent on the membrane potential. Computations based on the three-current system which was inferred from electrical measurements by Hodgkin and Huxley yield subthreshold responses in good agreement with experimental data. The point which is developed explicitly is that since the three currents, in general, have nonzero resting values and two currents, the "Na" system and the "K" system, are controlled by voltage-dependent time-variant conductances, the subthreshold behavior of the squid axon in the small-signal range can be looked upon as arising from phenomenological inductance or capacitance. The total phenomenological impedance as a function of membrane potential is derived by linearizing the empirically fitted equations which describe the time-variant conductances. At the resting potential the impedance consists of three structures in parallel, namely, two series RL elements and one series RC element. The true membrane capacitance acts in parallel with the phenomenological elements, to give a total impedance which is, in effect, a parallel R, L, C system with a "natural frequency" of oscillation. At relatively hyperpolarized levels the impedance "degenerates" to an RC system.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CHANDLER W. K., FITZHUGH R., COLE K. S. Theoretical stability properties of a space-clamped axon. Biophys J. 1962 Mar;2:105–127. doi: 10.1016/s0006-3495(62)86844-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Conti F., Palmieri G. Nerve fiber behaviour in heavy water under voltage-clamp. Biophysik. 1968 Aug 12;5(1):71–77. doi: 10.1007/BF01388134. [DOI] [PubMed] [Google Scholar]
  3. EYZAGUIRRE C., KUFFLER S. W. Processes of excitation in the dendrites and in the soma of single isolated sensory nerve cells of the lobster and crayfish. J Gen Physiol. 1955 Sep 20;39(1):87–119. doi: 10.1085/jgp.39.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. FUORTES M. G. Electric activity of cells in the eye of Limulus. Am J Ophthalmol. 1958 Nov;46(5 Pt 2):210–223. doi: 10.1016/0002-9394(58)90800-6. [DOI] [PubMed] [Google Scholar]
  5. Guttman R. Temperature dependence of oscillation in squid axons: comparison of experiments with computations. Biophys J. 1969 Mar;9(3):269–277. doi: 10.1016/S0006-3495(69)86385-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. HAGIWARA S., OOMURA Y. The critical depolarization for the spike in the squid giant axon. Jpn J Physiol. 1958 Sep 15;8(3):234–245. doi: 10.2170/jjphysiol.8.234. [DOI] [PubMed] [Google Scholar]
  7. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HUXLEY A. F. Ion movements during nerve activity. Ann N Y Acad Sci. 1959 Aug 28;81:221–246. doi: 10.1111/j.1749-6632.1959.tb49311.x. [DOI] [PubMed] [Google Scholar]
  9. MAURO A. Anomalous impedance, a phenomenological property of time-variant resistance. An analytic review. Biophys J. 1961 Mar;1:353–372. doi: 10.1016/s0006-3495(61)86894-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Sabah N. H., Leibovic K. N. Subthreshold oscillatory responses of the Hodgkin-Huxley cable model for the squid giant axon. Biophys J. 1969 Oct;9(10):1206–1222. doi: 10.1016/S0006-3495(69)86446-5. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES