Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1970 May 1;55(5):665–687. doi: 10.1085/jgp.55.5.665

Effects of Caffeine on Crayfish Muscle Fibers

II. Refractoriness and factors influencing recovery (repriming) of contractile responses

Dante J Chiarandini 1, John P Reuben 1, Lucien Girardier 1, George M Katz 1, Harry Grundfest 1
PMCID: PMC2203014  PMID: 5443469

Abstract

When caffeine evokes a contraction, and only then, crayfish muscle fibers become refractory to a second challenge with caffeine for up to 20 min in the standard saline (5 mM Ko). However, the fibers still respond with contraction to an increase in Ko, though with diminished tension. Addition of Mn slows recovery, but the latter is greatly accelerated during exposure of the fiber to high Ko, or after a brief challenge with high Ko. Neither the depolarization induced by the K, nor the repolarization after its removal accounts for the acceleration, which occurs only if the challenge with K had itself activated the contractile system; acceleration is blocked when contractile responses to K are blocked by reducing the Ca in the bath or by adding Mn. Recovery is accelerated by redistribution of intracellular Cl and by trains of intracellularly applied depolarizing pulses, but not by hyperpolarization. The findings indicate that two sources of Ca can be mobilized to activate the contractile system. Caffeine mobilizes principally the Ca store of the SR. Depolarizations that are induced by high Ko, by transient efflux of Cl, or by intracellularly applied currents mobilize another source of Ca which is strongly dependent upon the entry of Ca from the bathing medium. The sequestering mechanism of the SR apparently can utilize this second source of Ca to replenish its own store so as to accelerate recovery of responsiveness to a new challenge with caffeine.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashley C. C. The role of cell calcium in the contraction of single cannulated muscle fibers. Am Zool. 1967 Aug;7(3):647–659. doi: 10.1093/icb/7.3.647. [DOI] [PubMed] [Google Scholar]
  2. BIANCHI C. P. Kinetics of radiocaffeine uptake and release in frog sartorius. J Pharmacol Exp Ther. 1962 Oct;138:41–47. [PubMed] [Google Scholar]
  3. BIANCHI C. P., SHANES A. M. Calcium influx in skeletal muscle at rest, during activity, and during potassium contracture. J Gen Physiol. 1959 Mar 20;42(4):803–815. doi: 10.1085/jgp.42.4.803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brandt P. W., Reuben J. P., Girardier L., Grundfest H. Correlated morphological and physiological studies on isolated single muscle fibers. I. Fine structure of the crayfish muscle fiber. J Cell Biol. 1965 Jun;25(3 Suppl):233–260. doi: 10.1083/jcb.25.3.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. COSTANTIN L. L., FRANZINI-ARMSTRONG C., PODOLSKY R. J. LOCALIZATION OF CALCIUM-ACCUMULATING STRUCTURES IN STRIATED MUSCLE FIBERS. Science. 1965 Jan 8;147(3654):158–160. doi: 10.1126/science.147.3654.158. [DOI] [PubMed] [Google Scholar]
  6. Dunham P. B., Gainer H. The distribution of inorganic ions in lobster muscle. Biochim Biophys Acta. 1968 Apr 29;150(3):488–499. doi: 10.1016/0005-2736(68)90149-1. [DOI] [PubMed] [Google Scholar]
  7. Edwards C., Lorkovic H. The roles of calcium in excitation-contraction coupling in various muscles of the frog, mouse, and barnacle. Am Zool. 1967 Aug;7(3):615–622. doi: 10.1093/icb/7.3.615. [DOI] [PubMed] [Google Scholar]
  8. GIRARDIER L., REUBEN J. P., BRANDT P. W., GRUNDFEST H. EVIDENCE FOR ANION-PERMSELECTIVE MEMBRANE IN CRAYFISH MUSCLE FIBERS AND ITS POSSIBLE ROLE IN EXCITATION-CONTRACTION COUPLING. J Gen Physiol. 1963 Sep;47:189–214. doi: 10.1085/jgp.47.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gainer H. The role of calcium in excitation-contraction coupling of lobster muscle. J Gen Physiol. 1968 Jul;52(1):88–110. doi: 10.1085/jgp.52.1.88. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Grundfest H. Heterogeneity of excitable membrane: electrophysiological and pharmacological evidence and some consequences. Ann N Y Acad Sci. 1966 Jul 14;137(2):901–949. doi: 10.1111/j.1749-6632.1966.tb50208.x. [DOI] [PubMed] [Google Scholar]
  11. HASSELBACH W., MAKINOSE M. [The calcium pump of the "relaxing granules" of muscle and its dependence on ATP-splitting]. Biochem Z. 1961;333:518–528. [PubMed] [Google Scholar]
  12. HODGKIN A. L., HOROWICZ P. Potassium contractures in single muscle fibres. J Physiol. 1960 Sep;153:386–403. doi: 10.1113/jphysiol.1960.sp006541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. HODGKIN A. L., HOROWICZ P. The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J Physiol. 1959 Oct;148:127–160. doi: 10.1113/jphysiol.1959.sp006278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hagiwara S., Nakajima S. Differences in Na and Ca spikes as examined by application of tetrodotoxin, procaine, and manganese ions. J Gen Physiol. 1966 Mar;49(4):793–806. doi: 10.1085/jgp.49.4.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Heistracher P., Hunt C. C. Contractile repriming in snake twitch muscle fibres. J Physiol. 1969 May;201(3):613–626. doi: 10.1113/jphysiol.1969.sp008775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. OHNISHI T., EBASHI S. THE VELOCITY OF CALCIUM BINDING OF ISOLATED SARCOPLASMIC RETICULUM. J Biochem. 1964 Jun;55:599–603. doi: 10.1093/oxfordjournals.jbchem.a127932. [DOI] [PubMed] [Google Scholar]
  17. REUBEN J. P., GIRARDIER L., GRUNDFEST H. WATER TRANSFER AND CELL STRUCTURE IN ISOLATED CRAYFISH MUSCLE FIBERS. J Gen Physiol. 1964 Jul;47:1141–1174. doi: 10.1085/jgp.47.6.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Reuben J. P., Brandt P. W., Garcia H., Grundfest H. Excitation-contraction coupling in crayfish. Am Zool. 1967 Aug;7(3):623–645. doi: 10.1093/icb/7.3.623. [DOI] [PubMed] [Google Scholar]
  19. Sandow A. Excitation-contraction coupling in skeletal muscle. Pharmacol Rev. 1965 Sep;17(3):265–320. [PubMed] [Google Scholar]
  20. Takeda K. Permeability changes associated with the action potential in procaine-treated crayfish abdominal muscle fibers. J Gen Physiol. 1967 Mar;50(4):1049–1074. doi: 10.1085/jgp.50.4.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Weber A., Herz R. The relationship between caffeine contracture of intact muscle and the effect of caffeine on reticulum. J Gen Physiol. 1968 Nov;52(5):750–759. doi: 10.1085/jgp.52.5.750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Winegrad S. Intracellular calcium movements of frog skeletal muscle during recovery from tetanus. J Gen Physiol. 1968 Jan;51(1):65–83. doi: 10.1085/jgp.51.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Zachar J., Zacharová D. Potassium contractures in single muscle fibres of the crayfish. J Physiol. 1966 Oct;186(3):596–618. doi: 10.1113/jphysiol.1966.sp008058. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES