Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1970 May 1;55(5):565–584. doi: 10.1085/jgp.55.5.565

The Reliability of Neurons

Theodore Holmes Bullock 1
PMCID: PMC2203020  PMID: 5462670

Abstract

The prevalent probabilistic view is virtually untestable; it remains a plausible belief. The cases usually cited can not be taken as evidence for it. Several grounds for this conclusion are developed. Three issues are distinguished in an attempt to clarify a murky debate: (a) the utility of probabilistic methods in data reduction, (b) the value of models that assume indeterminacy, and (c) the validity of the inference that the nervous system is largely indeterministic at the neuronal level. No exception is taken to the first two; the second is a private heuristic question. The third is the issue to which the assertion in the first two sentences is addressed. Of the two kinds of uncertainty, statistical mechanical (= practical unpredictability) as in a gas, and Heisenbergian indeterminancy, the first certainly exists, the second is moot at the neuronal level. It would contribute to discussion to recognize that neurons perform with a degree of reliability. Although unreliability is difficult to establish, to say nothing of measure, evidence that some neurons have a high degree of reliability, in both connections and activity is increasing greatly. An example is given from sternarchine electric fish.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barlow H. B., Levick W. R. Three factors limiting the reliable detection of light by retinal ganglion cells of the cat. J Physiol. 1969 Jan;200(1):1–24. doi: 10.1113/jphysiol.1969.sp008679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bennett M. V., Pappas G. D., Giménez M., Nakajima Y. Physiology and ultrastructure of electrotonic junctions. IV. Medullary electromotor nuclei in gymnotid fish. J Neurophysiol. 1967 Mar;30(2):236–300. doi: 10.1152/jn.1967.30.2.236. [DOI] [PubMed] [Google Scholar]
  3. Bishop L. G., Keehn D. G., McCann G. D. Motion detection by interneurons of optic lobes and brain of the flies Calliphora phaenicia and Musca domestica. J Neurophysiol. 1968 Jul;31(4):509–525. doi: 10.1152/jn.1968.31.4.509. [DOI] [PubMed] [Google Scholar]
  4. Bishop L. G., Keehn D. G. Neural correlates of the optomotor responses in the fly. Kybernetik. 1967 May;3(6):288–295. doi: 10.1007/BF00271512. [DOI] [PubMed] [Google Scholar]
  5. Braitenberg V. Patterns of projection in the visual system of the fly. I. Retina-lamina projections. Exp Brain Res. 1967;3(3):271–298. doi: 10.1007/BF00235589. [DOI] [PubMed] [Google Scholar]
  6. Bullock T. H., Chichibu S. Further analysis of sensory coding in electroreceptors of electric fish. Proc Natl Acad Sci U S A. 1965 Aug;54(2):422–429. doi: 10.1073/pnas.54.2.422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Coggeshall R. E. A light and electron microscope study of the abdominal ganglion of Aplysia californica. J Neurophysiol. 1967 Nov;30(6):1263–1287. doi: 10.1152/jn.1967.30.6.1263. [DOI] [PubMed] [Google Scholar]
  8. FITZHUGH R. The statistical detection of threshold signals in the retina. J Gen Physiol. 1957 Jul 20;40(6):925–948. doi: 10.1085/jgp.40.6.925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. GALAMBOS R., SCHWARTZKOPFF J., RUPERT A. Microelectrode study of superior olivary nuclei. Am J Physiol. 1959 Sep;197:527–536. doi: 10.1152/ajplegacy.1959.197.3.527. [DOI] [PubMed] [Google Scholar]
  10. GRUESSER-CRONEHLS U., GRUESSER O. J., BULLOCK T. UNIT RESPONSES IN THE FROG'S TECTUM TO MOVING AND NONMOVING VISUAL STIMULI. Science. 1963 Aug 30;141(3583):820–822. doi: 10.1126/science.141.3583.820. [DOI] [PubMed] [Google Scholar]
  11. Grinnell A. D. Comparative physiology of hearing. Annu Rev Physiol. 1969;31:545–580. doi: 10.1146/annurev.ph.31.030169.002553. [DOI] [PubMed] [Google Scholar]
  12. Grusser O. J., Grusser-Cornehls U. Neurophysiologie des Bewebungssehens. Bewegungsempfindliche und richtungsspezifische Neurone im visuellen System. Ergeb Physiol. 1969;61:178–265. [PubMed] [Google Scholar]
  13. HAGIWARA S., KUSANO K., NEGISHI K. Physiological properties of electroreceptors of some gymnotids. J Neurophysiol. 1962 May;25:430–449. doi: 10.1152/jn.1962.25.3.430. [DOI] [PubMed] [Google Scholar]
  14. HAGIWARA S., MORITA H. Coding mechanisms of electro-receptor fibers in some electric fish. J Neurophysiol. 1963 Jul;26:551–567. doi: 10.1152/jn.1963.26.4.551. [DOI] [PubMed] [Google Scholar]
  15. HUBEL D. H., WIESEL T. N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol. 1962 Jan;160:106–154. doi: 10.1113/jphysiol.1962.sp006837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hagiwara S., Szabo T., Enger P. S. Electroreceptor mechanisms in a high-frequency weakly electric fish, Sternarchus albifrons. J Neurophysiol. 1965 Sep;28(5):784–799. doi: 10.1152/jn.1965.28.5.784. [DOI] [PubMed] [Google Scholar]
  17. Hagiwara S., Szabo T., Enger P. S. Physiological properties of electroreceptors in the electric eel, Electrophorus electricus. J Neurophysiol. 1965 Sep;28(5):775–783. doi: 10.1152/jn.1965.28.5.775. [DOI] [PubMed] [Google Scholar]
  18. Hoopen M. T. Probabilistic firing of neurons considered as a first passage problem. Biophys J. 2008 Dec 31;6(4):435–451. doi: 10.1016/S0006-3495(66)86668-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hubel D. H., Wiesel T. N. Receptive fields and functional architecture of monkey striate cortex. J Physiol. 1968 Mar;195(1):215–243. doi: 10.1113/jphysiol.1968.sp008455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. KUFFLER S. W., FITZHUGH R., BARLOW H. B. Maintained activity in the cat's retina in light and darkness. J Gen Physiol. 1957 May 20;40(5):683–702. doi: 10.1085/jgp.40.5.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kuiper J. W., Leutscher-Hazelhoff J. T. High-precision repetitive firing in the insect optic lobe and a hypothesis for its function in object location. Nature. 1965 Jun 12;206(989):1158–1160. doi: 10.1038/2061158b0. [DOI] [PubMed] [Google Scholar]
  22. Lamb J. C., Isaacs J. P. Indeterminacy, the synapse, the mnemic microstate, and the psyche. Cond Reflex. 1969 Jan-Mar;4(1):1–5. doi: 10.1007/BF03000072. [DOI] [PubMed] [Google Scholar]
  23. Larimer J. L., MacDonald J. A. Sensory feedback from electroreceptors to electromotor pacemaker centers in gymnotids. Am J Physiol. 1968 Jun;214(6):1253–1261. doi: 10.1152/ajplegacy.1968.214.6.1253. [DOI] [PubMed] [Google Scholar]
  24. Levy M. N., Martin P. J., Lano T., Zieske H. Paradoxical effect of vagus nerve stimulation on heart rate in dogs. Circ Res. 1969 Sep;25(3):303–314. doi: 10.1161/01.res.25.3.303. [DOI] [PubMed] [Google Scholar]
  25. MATURANA H. R., FRENK S. DIRECTIONAL MOVEMENT AND HORIZONTAL EDGE DETECTORS IN THE PIGEON RETINA. Science. 1963 Nov 15;142(3594):977–979. doi: 10.1126/science.142.3594.977. [DOI] [PubMed] [Google Scholar]
  26. McCann G. D., Dill J. C. Fundamental properties of intensity, form, and motion perception in the visual nervous systems of Calliphora phaenicia and Musca domestica. J Gen Physiol. 1969 Apr;53(4):385–413. doi: 10.1085/jgp.53.4.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Michael C. R. Receptive fields of directionally selective units in the optic nerve of the ground squirrel. Science. 1966 May 20;152(3725):1092–1095. doi: 10.1126/science.152.3725.1092. [DOI] [PubMed] [Google Scholar]
  28. Moore G. P., Perkel D. H., Segundo J. P. Statistical analysis and functional interpretation of neuronal spike data. Annu Rev Physiol. 1966;28:493–522. doi: 10.1146/annurev.ph.28.030166.002425. [DOI] [PubMed] [Google Scholar]
  29. Nicholls J. G., Baylor D. A. Specific modalities and receptive fields of sensory neurons in CNS of the leech. J Neurophysiol. 1968 Sep;31(5):740–756. doi: 10.1152/jn.1968.31.5.740. [DOI] [PubMed] [Google Scholar]
  30. Oyster C. W. The analysis of image motion by the rabbit retina. J Physiol. 1968 Dec;199(3):613–635. doi: 10.1113/jphysiol.1968.sp008671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. RUPERT A., MOUSHEGIAN G., GALAMBOS R. Microelectrode studies of primary vestibular neurons in cat. Exp Neurol. 1962 Feb;5:100–109. doi: 10.1016/0014-4886(62)90026-2. [DOI] [PubMed] [Google Scholar]
  32. Ratliff F., Hartline H. K., Lange D. Variability of interspike intervals in optic nerve fibers of Limulus: effect of light and dark adaptation. Proc Natl Acad Sci U S A. 1968 Jun;60(2):464–469. doi: 10.1073/pnas.60.2.464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Reid J. V. The cardiac pacemaker: effects of regularly spaced nervous input. Am Heart J. 1969 Jul;78(1):58–64. doi: 10.1016/0002-8703(69)90259-2. [DOI] [PubMed] [Google Scholar]
  34. SPERRY R. W. CHEMOAFFINITY IN THE ORDERLY GROWTH OF NERVE FIBER PATTERNS AND CONNECTIONS. Proc Natl Acad Sci U S A. 1963 Oct;50:703–710. doi: 10.1073/pnas.50.4.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Segundo J. P., Perkel D. H. The nerve cell as an analyzer of spike trains. UCLA Forum Med Sci. 1969;11:349–390. [PubMed] [Google Scholar]
  36. Straschill M., Hoffmann K. P. Relationship between localisation and functional properties of movement-sensitive neurons of the cat's tectum opticum. Brain Res. 1968 May;8(2):382–385. doi: 10.1016/0006-8993(68)90059-0. [DOI] [PubMed] [Google Scholar]
  37. Stuart A. E. Excitatory and inhibitory motoneurons in the central nervous system of the leech. Science. 1969 Aug 22;165(3895):817–819. doi: 10.1126/science.165.3895.817. [DOI] [PubMed] [Google Scholar]
  38. Suga N. Classification of inferior collicular neurones of bats in terms of responses to pure tones, FM sounds and noise bursts. J Physiol. 1969 Feb;200(2):555–574. doi: 10.1113/jphysiol.1969.sp008708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Trujillo-Cenóz O. Some aspects of the structural organization of the intermediate retina of dipterans. J Ultrastruct Res. 1965 Aug;13(1):1–33. doi: 10.1016/s0022-5320(65)80086-7. [DOI] [PubMed] [Google Scholar]
  40. WATERMAN T. H., WIERSMA C. A. Electrical responses in decapod crustacean visual systems. J Cell Comp Physiol. 1963 Feb;61:1–16. doi: 10.1002/jcp.1030610102. [DOI] [PubMed] [Google Scholar]
  41. Wiersma C. A., Oberjat T. The selective responsiveness of various crayfish oculomotor fibers to sensory stimuli. Comp Biochem Physiol. 1968 Jul;26(1):1–16. doi: 10.1016/0010-406x(68)90308-3. [DOI] [PubMed] [Google Scholar]
  42. Wiersma C. A., Yamaguchi T. Integration of visual stimuli by the crayfish central nervous system. J Exp Biol. 1967 Dec;47(3):409–431. doi: 10.1242/jeb.47.3.409. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES