Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1970 Jun 1;55(6):758–786. doi: 10.1085/jgp.55.6.758

Potassium Transport in Neurospora

Evidence for a multisite carrier at high pH

Carolyn W Slayman 1, Clifford L Slayman 1
PMCID: PMC2203021  PMID: 5424377

Abstract

At low extracellular pH (4–6), net uptake of potassium by Neurospora is a simple exponential process which obeys Michaelis kinetics as a function of [K]o. At high pH, however, potassium uptake becomes considerably more complex, and can be resolved into two distinct exponential components. The fast component (time constant = 1.2 min) is matched quantitatively by a rapid loss of sodium; it is attributed to ion exchange within the cell wall, since it is comparatively insensitive to low temperature and metabolic inhibitors. By contrast, the slower component (time constant = 10.9 min) is inhibited markedly at 0°C and by CN and deoxycorticosterone, and is thought to represent carrier-mediated transport of potassium across the cell membrane. This transport process exhibits sigmoid kinetics as a function of [K]o; the data can be fitted satisfactorily by two different two-site models (one involving a carrier site and a modifier site, the other an allosteric model). Either of these models could also accommodate the simple Michaelis kinetics at low pH.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARMSTRONG W. M., ROTHSTEIN A. DISCRIMINATION BETWEEN ALKALI METAL CATIONS BY YEAST. I. EFFECT OF PH ON UPTAKE. J Gen Physiol. 1964 Sep;48:61–71. doi: 10.1085/jgp.48.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Armstrong W. M., Rothstein A. Discrimination between alkali metal cations by yeast. II. Cation interactions in transport. J Gen Physiol. 1967 Mar;50(4):967–988. doi: 10.1085/jgp.50.4.967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CONWAY E. J., BRADY T. G. Biological production of acid and alkali; quantitative relations of succinic and carbonic acids to the potassium and hydrogen ion exchange in fermenting yeast. Biochem J. 1950 Sep;47(3):360–369. doi: 10.1042/bj0470360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CONWAY E. J., DUGGAN P. F., KERNAN R. P. FURTHER STUDIES ON THE NATURE OF THE PHYSIOLOGICAL K-CARRIER IN YEAST. Proc R Ir Acad B. 1963 Nov;63:93–102. [PubMed] [Google Scholar]
  5. DIAMOND J. M., SOLOMON A. K. Intracellular potassium compartments in Nitella axillaris. J Gen Physiol. 1959 May 20;42(5):1105–1121. doi: 10.1085/jgp.42.5.1105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. EBERHART B. M. Exogenous enzymes of Neurospora conidia and mycelia. J Cell Comp Physiol. 1961 Aug;58:11–16. doi: 10.1002/jcp.1030580103. [DOI] [PubMed] [Google Scholar]
  7. Galdiero F. Hydrogen ion binding of bacterial cell wall. Experientia. 1968 Apr 15;24(4):352–353. doi: 10.1007/BF02140816. [DOI] [PubMed] [Google Scholar]
  8. Good N. E., Winget G. D., Winter W., Connolly T. N., Izawa S., Singh R. M. Hydrogen ion buffers for biological research. Biochemistry. 1966 Feb;5(2):467–477. doi: 10.1021/bi00866a011. [DOI] [PubMed] [Google Scholar]
  9. HAROLD F. M., MILLER A. Intracellular localization of inorganic polyphosphate in Neurospora crassa. Biochim Biophys Acta. 1961 Jun 24;50:261–270. doi: 10.1016/0006-3002(61)90324-9. [DOI] [PubMed] [Google Scholar]
  10. KEYNES R. D. SOME FURTHER OBSERVATIONS ON THE SODIUM EFFLUX IN FROG MUSCLE. J Physiol. 1965 May;178:305–325. doi: 10.1113/jphysiol.1965.sp007629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. KEYNES R. D., SWAN R. C. The effect of external sodium concentration on the sodium fluxes in frog skeletal muscle. J Physiol. 1959 Oct;147:591–625. doi: 10.1113/jphysiol.1959.sp006264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. KOTYK A. Uptake of 2,4-dinitrophenol by the yeast cell. Folia Microbiol (Praha) 1962 Mar;7:109–114. doi: 10.1007/BF02927233. [DOI] [PubMed] [Google Scholar]
  13. LESTER G., STONE D., HECHTER O. The effects of deoxycorticosterone and other steroids on Neurospora crassa. Arch Biochem Biophys. 1958 May;75(1):196–214. doi: 10.1016/0003-9861(58)90410-7. [DOI] [PubMed] [Google Scholar]
  14. Lakshminarayanaiah N. Transport phenomena in artificial membranes. Chem Rev. 1965 Oct;65(5):491–565. doi: 10.1021/cr60237a001. [DOI] [PubMed] [Google Scholar]
  15. MONOD J., WYMAN J., CHANGEUX J. P. ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. J Mol Biol. 1965 May;12:88–118. doi: 10.1016/s0022-2836(65)80285-6. [DOI] [PubMed] [Google Scholar]
  16. MULLINS L. J., FRUMENTO A. S. The concentration dependence of sodium efflux from muscle. J Gen Physiol. 1963 Mar;46:629–654. doi: 10.1085/jgp.46.4.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mahadevan P. R., Tatum E. L. Relationship of the major constituents of the Neurospora crassa cell wall to wild-type and colonial morphology. J Bacteriol. 1965 Oct;90(4):1073–1081. doi: 10.1128/jb.90.4.1073-1081.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Manocha M. S., Colvin J. R. Structure and composition of the cell wall of Neurospora crassa. J Bacteriol. 1967 Jul;94(1):202–212. doi: 10.1128/jb.94.1.202-212.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. POST R. L., JOLLY P. C. The linkage of sodium, potassium, and ammonium active transport across the human erythrocyte membrane. Biochim Biophys Acta. 1957 Jul;25(1):118–128. doi: 10.1016/0006-3002(57)90426-2. [DOI] [PubMed] [Google Scholar]
  20. ROTHSTEIN A., HAYES A. D. The relationship of the cell surface to metabolism. XIII. The cation-binding properties of the yeast cell surface. Arch Biochem Biophys. 1956 Jul;63(1):87–99. doi: 10.1016/0003-9861(56)90012-1. [DOI] [PubMed] [Google Scholar]
  21. SHATKIN A. J., TATUM E. L. Electron microscopy of Neurospora crassa mycelia. J Biophys Biochem Cytol. 1959 Dec;6:423–426. doi: 10.1083/jcb.6.3.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. SLAYMAN C. W., TATUM E. L. POTASSIUM TRANSPORT IN NEUROSPORA. I. INTRACELLULAR SODIUM AND POTASSIUM CONCENTRATIONS, AND CATION REQUIREMENTS FOR GROWTH. Biochim Biophys Acta. 1964 Nov 29;88:578–592. [PubMed] [Google Scholar]
  23. Sachs J. R. Competitive effects of some cations on active potassium transport in the human red blood cell. J Clin Invest. 1967 Sep;46(9):1433–1441. doi: 10.1172/JCI105635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sachs J. R., Welt L. G. The concentration dependence of active potassium transport in the human red blood cell. J Clin Invest. 1967 Jan;46(1):65–76. doi: 10.1172/JCI105512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schaedle M., Jacobson L. Ion Absorption and Retention by Chlorella pyrenoidosa. I. Absorption of Potassium. Plant Physiol. 1965 Mar;40(2):214–220. doi: 10.1104/pp.40.2.214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Slayman C. L., Slayman C. W. Net uptake of potassium in Neurospora. Exchange for sodium and hydrogen ions. J Gen Physiol. 1968 Sep;52(3):424–443. doi: 10.1085/jgp.52.3.424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Slayman C. W., Tatum E. L. Potassium transport in Neurospora. 3. Isolation of a transport mutant. Biochim Biophys Acta. 1965 Sep 27;109(1):184–193. doi: 10.1016/0926-6585(65)90102-0. [DOI] [PubMed] [Google Scholar]
  28. Slayman C. W., Tatum E. L. Potassium transport in neurospora. II. Measurement of steady-state potassium fluxes. Biochim Biophys Acta. 1965 May 25;102(1):149–160. [PubMed] [Google Scholar]
  29. Trevithick J. R., Metzenberg R. L. Genetic alteration of pore size and other properties of the Neurospora cell wall. J Bacteriol. 1966 Oct;92(4):1016–1020. doi: 10.1128/jb.92.4.1016-1020.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES