Abstract
The aim of this paper is twofold. First, to describe a method for the measurement of the unidirectional flux of Na from the outer bathing solution into epithelium (JOT), and second, to describe the use of this method under a variety of experimental conditions in order to obtain some insight into the nature of this flux. The method developed is based on the exposure of a frog skin to a Ringer solution containing 22Na. The exposure is made so that neighboring points along the surface remain in contact with the 22Na solution for gradually longer periods, ranging from 0 to 46 sec. Some 8 to 10 samples of the exposed part are used to obtain the time course of the uptake of 22Na and this time course is used, in turn, to evaluate JOT. This flux is then studied in skins mounted between two identical Ringer solutions with 115 mM Na (11.25 ± 0.10 [18] µmole·hr-2 cm-2), and in skins mounted with Ringer with 1 mM Na on the outside and 115 mM Na on the inside (0.43 ± 0.05 [18] µmole·hr-1·cm-2. From the observations that the flux is much larger than the net Na flux across the whole skin, that it is inhibited by K+, and is unaffected by ouabain, it is concluded that the penetration of Na+ into the epithelium does not occur by simple diffusion and is not directly dependent on an ouabain-sensitive mechanism. In the course of these experiments it was observed that when the skin was crushed between two chambers the uptake of Na in the neighboring exposed areas was decreased.
Full Text
The Full Text of this article is available as a PDF (1.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ANDERSEN B., ZERAHN K. METHOD FOR NON-DESTRUCTIVE DETERMINATION OF THE SODIUM TRANSPORT POOL IN FROG SKIN WITH RADIOSODIUM. Acta Physiol Scand. 1963 Dec;59:319–329. doi: 10.1111/j.1748-1716.1963.tb02747.x. [DOI] [PubMed] [Google Scholar]
- Bentley P. J. Action of amphotericin B on the toad bladder: evidence for sodium transport along two pathways. J Physiol. 1968 Jun;196(3):703–711. doi: 10.1113/jphysiol.1968.sp008531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Biber T. U., Chez R. A., Curran P. F. Na transport across frog skin at low external Na concentrations. J Gen Physiol. 1966 Jul;49(6):1161–1176. doi: 10.1085/jgp.0491161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CEREIJIDO M., CURRAN P. F. INTRACELLULAR ELECTRICAL POTENTIALS IN FROG SKIN. J Gen Physiol. 1965 Mar;48:543–557. doi: 10.1085/jgp.48.4.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CEREIJIDO M., HERRERA F. C., FLANIGAN W. J., CURRAN P. F. THE INFLUENCE OF NA CONCENTRATION ON NA TRANSPORT ACROSS FROG SKIN. J Gen Physiol. 1964 May;47:879–893. doi: 10.1085/jgp.47.5.879. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CURRAN P. F., HERRERA F. C., FLANIGAN W. J. The effect of Ca and antidiuretic hormone on Na transport across frog skin. II. Sites and mechanisms of action. J Gen Physiol. 1963 May;46:1011–1027. doi: 10.1085/jgp.46.5.1011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cereijido M., Reisin I., Rotunno C. A. The effect of sodium concentration on the content and distribution of sodium in the frog skin. J Physiol. 1968 May;196(1):237–253. doi: 10.1113/jphysiol.1968.sp008504. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cereijido M., Rotunno C. A. Transport and distribution of sodium across frog skin. J Physiol. 1967 Jun;190(3):481–497. doi: 10.1113/jphysiol.1967.sp008223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Curran P. F., Cereijido M. K fluxes in frog skin. J Gen Physiol. 1965 Jul;48(6):1011–1033. doi: 10.1085/jgp.48.6.1011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eisenman G., Sandblom J. P., Walker J. L., Jr Membrane structure and ion permeation. Study of ion exchange membrane structure and function is relevant to analysis of biological ion permeation. Science. 1967 Feb 24;155(3765):965–974. doi: 10.1126/science.155.3765.965. [DOI] [PubMed] [Google Scholar]
- Farquhar M. G., Palade G. E. Adenosine triphosphatase localization in amphibian epidermis. J Cell Biol. 1966 Aug;30(2):359–379. doi: 10.1083/jcb.30.2.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferreira K. T. Anionic dependence of sodium transport in the frog skin. Biochim Biophys Acta. 1968 Jun 11;150(4):587–598. doi: 10.1016/0005-2736(68)90048-5. [DOI] [PubMed] [Google Scholar]
- Fischbarg J., Zadunaisky J. A., De Fisch F. W. Dependence of sodium and chloride transports on chloride concentration in isolated frog skin. Am J Physiol. 1967 Oct;213(4):963–968. doi: 10.1152/ajplegacy.1967.213.4.963. [DOI] [PubMed] [Google Scholar]
- García Romeu F., Salibián A., Pezzani-Hernádez S. The nature of the in vivo sodium and chloride uptake mechanisms through the epithelium against sodium and of bicarbonate against chloride. J Gen Physiol. 1969 Jun;53(6):816–835. doi: 10.1085/jgp.53.6.816. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HOSHIKO T., USSING H. H. The kinetics of Na24 flux across amphibian skin and bladder. Acta Physiol Scand. 1960 May 25;49:74–81. doi: 10.1111/j.1748-1716.1960.tb01931.x. [DOI] [PubMed] [Google Scholar]
- KIDDER G. W., 3rd, CEREIJIDO M., CURRAN P. F. TRANSIENT CHANGES IN ELECTRICAL POTENTIAL DIFFERENCES ACROSS FROG SKIN. Am J Physiol. 1964 Oct;207:935–940. doi: 10.1152/ajplegacy.1964.207.4.935. [DOI] [PubMed] [Google Scholar]
- KOEFOED-JOHNSEN V., USSING H. H. The nature of the frog skin potential. Acta Physiol Scand. 1958 Jun 2;42(3-4):298–308. doi: 10.1111/j.1748-1716.1958.tb01563.x. [DOI] [PubMed] [Google Scholar]
- Lindemann B. Sodium- and calcium-dependence of threshold potential in frog skin excitation. Biochim Biophys Acta. 1968 Nov 5;163(3):424–426. doi: 10.1016/0005-2736(68)90130-2. [DOI] [PubMed] [Google Scholar]
- Loewenstein W. R., Socolar S. J., Higashino S., Kanno Y., Davidson N. Intercellular Communication: Renal, Urinary Bladder, Sensory, and Salivary Gland Cells. Science. 1965 Jul 16;149(3681):295–298. doi: 10.1126/science.149.3681.295. [DOI] [PubMed] [Google Scholar]
- MACROBBIE E. A., USSING H. H. Osmotic behaviour of the epithelial cells of frog skin. Acta Physiol Scand. 1961 Nov-Dec;53:348–365. doi: 10.1111/j.1748-1716.1961.tb02293.x. [DOI] [PubMed] [Google Scholar]
- Rotunno C. A., Kowalewski V., Cereijido M. Nuclear spin resonance evidence for complexing of sodium in frog skin. Biochim Biophys Acta. 1967 Feb 1;135(1):170–173. doi: 10.1016/0005-2736(67)90022-3. [DOI] [PubMed] [Google Scholar]
- VON EULER C., GREEN J. D., RICCI G. The role of hippocampal dendrites in evoked responses and after-discharges. Acta Physiol Scand. 1958 Feb 4;42(2):87–111. doi: 10.1111/j.1748-1716.1958.tb01544.x. [DOI] [PubMed] [Google Scholar]
- Vilallonga F., Fernández M., Rotunno C., Cereijido M. The interactions of L-alpha-palmitoyl lecithin monolayers with Na+,K+ or Li+, and its possile role in membrane phenomena. Biochim Biophys Acta. 1969 Jun 3;183(1):98–109. doi: 10.1016/0005-2736(69)90133-3. [DOI] [PubMed] [Google Scholar]
- ZADUNAISKY J. A., CANDIA O. A., CHIARANDINI D. J. THE ORIGIN OF THE SHORT-CIRCUIT CURRENT IN THE ISOLATED SKIN OF THE SOUTH AMERICAN FROG LEPTODACTYLUS OCELLATUS. J Gen Physiol. 1963 Nov;47:393–402. doi: 10.1085/jgp.47.2.393. [DOI] [PMC free article] [PubMed] [Google Scholar]