Abstract
Membrane characteristics of neuron somata in the medulla terminalis ganglionic X-organ of crayfish have been investigated with intracellular glass microelectrodes. The soma membrane developed action potentials with 10–20 mv of overshoot. Delayed rectification appeared at 10–20 mv above resting membrane potential. In 50% of the neuron somata examined, action potentials were observed in Na-free medium or TTX medium. The peak potential level of the spike in these media depended on the extracellular concentration of Ca ion. It increased with the Ca concentration. In low calcium media, the peak potential level of the spike varied with Na concentration. Action potentials of the X-organ-sinus gland tract disappeared after bathing in Na-free or TTX medium, suggesting that the conductive action potential was dependent on Na ions. From these results, it is concluded that there are two systems in the neuron soma, one of which responds to the Na ion and the other, to the Ca ion. Inhibitory innervation of the X-organ by the cerebral ganglion was manifested by IPSP's when the optic peduncle was stimulated. A postulated connection between the Ca-dependent spike and the release of hormone in X-organ neuron somata is discussed.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ARAKI T., OTANI T. Response of single motoneurons to direct stimulation in toad's spinal cord. J Neurophysiol. 1955 Sep;18(5):472–485. doi: 10.1152/jn.1955.18.5.472. [DOI] [PubMed] [Google Scholar]
- BENNETT M. V., FOX S. Electrophysiology of caudal neurosecretory cells in the skate and fluke. Gen Comp Endocrinol. 1962 Feb;2:77–95. doi: 10.1016/0016-6480(62)90031-x. [DOI] [PubMed] [Google Scholar]
- BLISS D. E., DURAND J. B., WELSCH J. H. Neurosecretory systems in decapod Crustacea. Z Zellforsch Mikrosk Anat. 1954;39(5):520–536. doi: 10.1007/BF00334801. [DOI] [PubMed] [Google Scholar]
- BOISTEL J., FATT P. Membrane permeability change during inhibitory transmitter action in crustacean muscle. J Physiol. 1958 Nov 10;144(1):176–191. doi: 10.1113/jphysiol.1958.sp006094. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bennett M. R. The effect of cations on the electrical properties of the smooth muscle cells of the guinea-pig vas deferens. J Physiol. 1967 Jun;190(3):465–479. doi: 10.1113/jphysiol.1967.sp008222. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brading A., Bülbring E., Tomita T. The effect of sodium and calcium on the action potential of the smooth muscle of the guinea-pig taenia coli. J Physiol. 1969 Feb;200(3):637–654. doi: 10.1113/jphysiol.1969.sp008713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CARLISLE D. B., PASSANO L. M. The X-organ of crustacea. Nature. 1953 Jun 13;171(4363):1070–1071. doi: 10.1038/1711070b0. [DOI] [PubMed] [Google Scholar]
- COOKE I. M. ELECTRICAL ACTIVITY AND RELEASE OF NEUROSECRETORY MATERIAL IN CRAB PERICARDIAL ORGANS. Comp Biochem Physiol. 1964 Dec;13:353–366. doi: 10.1016/0010-406x(64)90029-5. [DOI] [PubMed] [Google Scholar]
- COOMBS J. S., CURTIS D. R., ECCLES J. C. The interpretation of spike potentials of motoneurones. J Physiol. 1957 Dec 3;139(2):198–231. doi: 10.1113/jphysiol.1957.sp005887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Colomo F., Rahamimoff R. Interaction between sodium and calcium ions in the process of transmitter release at the neuromuscular junction. J Physiol. 1968 Sep;198(1):203–218. doi: 10.1113/jphysiol.1968.sp008602. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Douglas W. W., Kanno T., Sampson S. R. Influence of the ionic environment on the membrane potential of adrenal chromaffin cells and on the depolarizing effect of acetylcholine. J Physiol. 1967 Jul;191(1):107–121. doi: 10.1113/jphysiol.1967.sp008239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Douglas W. W. Stimulus-secretion coupling: the concept and clues from chromaffin and other cells. Br J Pharmacol. 1968 Nov;34(3):451–474. doi: 10.1111/j.1476-5381.1968.tb08474.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- EDWARDS C., OTTOSON D. The site of impulse initiation in a nerve cell of a crustacean stretch receptor. J Physiol. 1958 Aug 29;143(1):138–148. doi: 10.1113/jphysiol.1958.sp006049. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FATT P., GINSBORG B. L. The ionic requirements for the production of action potentials in crustacean muscle fibres. J Physiol. 1958 Aug 6;142(3):516–543. doi: 10.1113/jphysiol.1958.sp006034. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FATT P., KATZ B. The electrical properties of crustacean muscle fibres. J Physiol. 1953 Apr 28;120(1-2):171–204. doi: 10.1113/jphysiol.1953.sp004884. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fridberg G., Iwasaki S., Yagi K., Bern H. A., Wilson D. M., Nishioka R. S. Relation of impulse conduction to electrically induced release of neurosecretory material from the urophysis of the teleost fish Tilapia mossambica. J Exp Zool. 1966 Feb;161(1):137–149. doi: 10.1002/jez.1401610113. [DOI] [PubMed] [Google Scholar]
- Geduldig D., Junge D. Sodium and calcium components of action potentials in the Aplysia giant neurone. J Physiol. 1968 Dec;199(2):347–365. doi: 10.1113/jphysiol.1968.sp008657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HAGIWARA S., CHICHIBU S., NAKA K. I. THE EFFECTS OF VARIOUS IONS ON RESTING AND SPIKE POTENTIALS OF BARNACLE MUSCLE FIBERS. J Gen Physiol. 1964 Sep;48:163–179. doi: 10.1085/jgp.48.1.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HAGIWARA S., NAKA K. I. THE INITIATION OF SPIKE POTENTIAL IN BARNACLE MUSCLE FIBERS UNDER LOW INTRACELLULAR CA++. J Gen Physiol. 1964 Sep;48:141–162. doi: 10.1085/jgp.48.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGE M. H., CHAPMAN G. B. Some observations on the fine structure of the sinus gland of a land crab, Gecarcinus lateralis. J Biophys Biochem Cytol. 1958 Sep 25;4(5):571–574. doi: 10.1083/jcb.4.5.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hagiwara S., Nakajima S. Differences in Na and Ca spikes as examined by application of tetrodotoxin, procaine, and manganese ions. J Gen Physiol. 1966 Mar;49(4):793–806. doi: 10.1085/jgp.49.4.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ISHIBASHI T. Electrical activity of the caudal neurosecretory cells in the eel Anguilla japonica with special reference to synaptic transmission. Gen Comp Endocrinol. 1962 Oct;2:415–424. doi: 10.1016/0016-6480(62)90038-2. [DOI] [PubMed] [Google Scholar]
- Ishikawa T., Koizumi K., Brooks C. M. Electrical activity recorded from the pituitary stalk of the cat. Am J Physiol. 1966 Mar;210(3):427–431. doi: 10.1152/ajplegacy.1966.210.3.427. [DOI] [PubMed] [Google Scholar]
- KANDEL E. R. ELECTRICAL PROPERTIES OF HYPOTHALAMIC NEUROENDOCRINE CELLS. J Gen Physiol. 1964 Mar;47:691–717. doi: 10.1085/jgp.47.4.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KELLY J. S. ANTAGONISM BETWEEN NA+ AND CA2+ AT THE NEUROMUSCULAR JUNCTION. Nature. 1965 Jan 16;205:296–297. doi: 10.1038/205296a0. [DOI] [PubMed] [Google Scholar]
- Katz B., Miledi R. A study of synaptic transmission in the absence of nerve impulses. J Physiol. 1967 Sep;192(2):407–436. doi: 10.1113/jphysiol.1967.sp008307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katz B., Miledi R. Tetrodotoxin-resistant electric activity in presynaptic terminals. J Physiol. 1969 Aug;203(2):459–487. doi: 10.1113/jphysiol.1969.sp008875. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koketsu K., Nishi S. Calcium and action potentials of bullfrog sympathetic ganglion cells. J Gen Physiol. 1969 May;53(5):608–623. doi: 10.1085/jgp.53.5.608. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NARAHASHI T., MOORE J. W., SCOTT W. R. TETRODOTOXIN BLOCKAGE OF SODIUM CONDUCTANCE INCREASE IN LOBSTER GIANT AXONS. J Gen Physiol. 1964 May;47:965–974. doi: 10.1085/jgp.47.5.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reuter H. The dependence of slow inward current in Purkinje fibres on the extracellular calcium-concentration. J Physiol. 1967 Sep;192(2):479–492. doi: 10.1113/jphysiol.1967.sp008310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TAKEUCHI A., TAKEUCHI N. LOCALIZED ACTION OF GAMMA-AMINOBUTYRIC ACID ON THE CRAYFISH MUSCLE. J Physiol. 1965 Mar;177:225–238. doi: 10.1113/jphysiol.1965.sp007588. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TAUC L., HUGHES G. M. Modes of initiation and propagation of spikes in the branching axons of molluscan central neurons. J Gen Physiol. 1963 Jan;46:533–549. doi: 10.1085/jgp.46.3.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takeuchi A., Takeuchi N. Anion permeability of the inhibitory post-synaptic membrane of the crayfish neuromuscular junction. J Physiol. 1967 Aug;191(3):575–590. doi: 10.1113/jphysiol.1967.sp008269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- YAGI K., BERN H. A., HAGADORN I. R. ACTION POTENTIALS OF NEUROSECRETORY NEURONS IN THE LEECH THEROMYZON RUDE. Gen Comp Endocrinol. 1963 Oct;3:490–495. doi: 10.1016/0016-6480(63)90081-9. [DOI] [PubMed] [Google Scholar]
- Yagi K., Azuma T., Matsuda K. Neurosecretory cell: capable of conducting impulse in rats. Science. 1966 Nov 11;154(3750):778–779. doi: 10.1126/science.154.3750.778. [DOI] [PubMed] [Google Scholar]
