Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1971 Feb 1;57(2):188–201. doi: 10.1085/jgp.57.2.188

Magnesium in Single Skeletal Muscle Cells of Balanus

Ernest Page 1, Bert A Mobley 1, Margaret Johnson 1, Judy E Upshaw 1
PMCID: PMC2203077  PMID: 5543417

Abstract

Single skeletal muscle cells of Balanus contain 48 ± 1 mmoles magnesium/kg dry weight. Although 28Mg can be shown either to enter the cells or to be bound to the cell surface within less than 10 min, only 2.1 ± 0.3% of cellular or cell surface Mg exchanges with this isotope even after several hours. Glycerinated cells washed out in Tris buffer at low ionic strength retain ∼70% of the Mg present in intact cells. About 85% of this Mg is removed by extraction with KCl or NaCl at concentrations of K and Na which prevail in intact cells, as well as by pyrophosphate, Tris-ATP, or reduction of the ionized Mg concentration to 1 µM. Lowering the ionized Mg concentration to 0.1 µM does not further reduce the Mg content of glycerinated cells. The pH dependence of KCl-inextractable Mg suggests that more than one class of binding sites is involved. A significant fraction of the KCl-inextractable Mg bound to glycerinated cells fails to exchange with 28Mg even after long equilibration. It is suggested that this fraction may be actin-bound Mg incorporated into the thin filaments during the polymerization of actin.

Full Text

The Full Text of this article is available as a PDF (879.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BOZLER E. Binding of calcium and magnesium by the contractile elements. J Gen Physiol. 1955 Jul 20;38(6):735–742. doi: 10.1085/jgp.38.6.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brinley F. J., Jr Sodium and potassium fluxes in isolated barnacle muscle fibers. J Gen Physiol. 1968 Apr;51(4):445–477. doi: 10.1085/jgp.51.4.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dancker P. The binding of calcium and magnesium to actomyosin and its modification by natural tropomyosin. Pflugers Arch. 1970;315(3):198–211. doi: 10.1007/BF00586413. [DOI] [PubMed] [Google Scholar]
  4. GILBERT D. L. Effect of pH on muscle calcium and magnesium. Proc Soc Exp Biol Med. 1961 Mar;106:550–552. doi: 10.3181/00379727-106-26399. [DOI] [PubMed] [Google Scholar]
  5. GILBERT D. L. Magnesium equilibrium in muscle. J Gen Physiol. 1960 Jul;43:1103–1118. doi: 10.1085/jgp.43.6.1103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Good N. E., Winget G. D., Winter W., Connolly T. N., Izawa S., Singh R. M. Hydrogen ion buffers for biological research. Biochemistry. 1966 Feb;5(2):467–477. doi: 10.1021/bi00866a011. [DOI] [PubMed] [Google Scholar]
  7. HAGIWARA S., NAKA K. I. THE INITIATION OF SPIKE POTENTIAL IN BARNACLE MUSCLE FIBERS UNDER LOW INTRACELLULAR CA++. J Gen Physiol. 1964 Sep;48:141–162. doi: 10.1085/jgp.48.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HASSELBACH W. Die Bindung von Adenosindiphosphat, von anorganischem Phosphat und von Erdalkalien an die Strukturpotein des Muskels. Biochim Biophys Acta. 1957 Sep;25(3):562–574. doi: 10.1016/0006-3002(57)90528-0. [DOI] [PubMed] [Google Scholar]
  9. HOYLE G., SMYTH T., Jr NEUROMUSCULAR PHYSIOLOGY OF GIANT MUSCLE FIBERS OF A BARNACLE, BALANUS NUBILUS DARWIN. Comp Biochem Physiol. 1963 Dec;10:291–314. doi: 10.1016/0010-406x(63)90229-9. [DOI] [PubMed] [Google Scholar]
  10. Hagiwara S., Takahashi K., Junge D. Excitation-contraction coupling in a barnacle muscle fiber as examined with voltage clamp technique. J Gen Physiol. 1968 Feb;51(2):157–175. doi: 10.1085/jgp.51.2.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hagiwara S., Takahashi K. Surface density of calcium ions and calcium spikes in the barnacle muscle fiber membrane. J Gen Physiol. 1967 Jan;50(3):583–601. doi: 10.1085/jgp.50.3.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Herz R., Weber A., Reiss I. The role of magnesium in the relaxation of myofibrils. Biochemistry. 1969 Jun;8(6):2266–2271. doi: 10.1021/bi00834a005. [DOI] [PubMed] [Google Scholar]
  13. Hotta K., Bowen W. J. Contraction and ATPase activity of glycerinated muscle fibers and myofibrillar fragments. Am J Physiol. 1970 Feb;218(2):332–337. doi: 10.1152/ajplegacy.1970.218.2.332. [DOI] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. McLaughlin S. G., Hinke J. A. Optical density changes of single muscle fibres in sodium-free solutions. Can J Physiol Pharmacol. 1968 Mar;46(2):247–260. doi: 10.1139/y68-041. [DOI] [PubMed] [Google Scholar]
  16. PAGE E. Cat heart muscle in vitro. III. The extracellular space. J Gen Physiol. 1962 Nov;46:201–213. doi: 10.1085/jgp.46.2.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Page E., Page E. G. Distribution of ions and water between tissue compartments in the perfused left ventricle of the rat heart. Circ Res. 1968 Mar;22(3):435–446. doi: 10.1161/01.res.22.3.435. [DOI] [PubMed] [Google Scholar]
  18. WEBER A., HERZ R. The binding of calcium to actomyosin systems in relation to their biological activity. J Biol Chem. 1963 Feb;238:599–605. [PubMed] [Google Scholar]
  19. WEBER A., WINICUR S. The role of calcium in the superprecipitation of actomyosin. J Biol Chem. 1961 Dec;236:3198–3202. [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES