Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1982 Aug;151(2):678–685. doi: 10.1128/jb.151.2.678-685.1982

Biochemical characterization of resistance determinants cloned from antibiotic-producing streptomycetes.

C J Thompson, R H Skinner, J Thompson, J M Ward, D A Hopwood, E Cundliffe
PMCID: PMC220308  PMID: 6284707

Abstract

Determinants of antibiotic resistance have been cloned from four antibiotic-producing streptomycetes into Streptomyces lividans. Biochemical analyses of resistant clones revealed the presence of enzymes that had previously been characterized as likely resistance determinants in the producing organisms. These included: 23S rRNA methylases from S. azureus and S. erythreus, which confer resistance to thiostrepton and erythromycin, respectively; viomycin phosphotransferase from S. vinaceus; and aminoglycoside phosphotransferase and acetyltransferase from the neomycin producer S. fradiae. In general, the levels of antibiotic resistance of the clones were similar to those of the producing organisms. Although the two aminoglycoside-modifying enzymes from S. fradiae could independently confer only low-level resistance to neomycin, the presence of both enzymes in the same strain resulted in a level of resistance comparable with that of the producing organism.

Full text

PDF
678

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Biddlecome S., Haas M., Davies J., Miller G. H., Rane D. F., Daniels P. J. Enzymatic modification of aminoglycoside antibiotics: a new 3-N-acetylating enzyme from a Pseudomonas aeruginosa isolate. Antimicrob Agents Chemother. 1976 Jun;9(6):951–955. doi: 10.1128/aac.9.6.951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chater K. F., Hopwood D. A., Kieser T., Thompson C. J. Gene cloning in Streptomyces. Curr Top Microbiol Immunol. 1982;96:69–95. doi: 10.1007/978-3-642-68315-2_5. [DOI] [PubMed] [Google Scholar]
  3. Cundliffe E., Dixon P., Stark M., Stöffler G., Ehrlich R., Stöffler-Meilicke M., Cannon M. Ribosomes in thiostrepton-resistant mutants of Bacillus megaterium lacking a single 50 S subunit protein. J Mol Biol. 1979 Aug 5;132(2):235–252. doi: 10.1016/0022-2836(79)90393-0. [DOI] [PubMed] [Google Scholar]
  4. Cundliffe E. Mechanism of resistance to thiostrepton in the producing-organism Streptomyces azureus. Nature. 1978 Apr 27;272(5656):792–795. doi: 10.1038/272792a0. [DOI] [PubMed] [Google Scholar]
  5. Cundliffe E., Thompson J. Ribose methylation and resistance to thiostrepton. Nature. 1979 Apr 26;278(5707):859–861. doi: 10.1038/278859a0. [DOI] [PubMed] [Google Scholar]
  6. Fahnestock S., Erdmann V., Nomura M. Reconstitution of 50 S ribosomal subunits from Bacillus stearothermophilus. Methods Enzymol. 1974;30:554–562. [PubMed] [Google Scholar]
  7. Goldman P. R., Northrop D. B. Purification and spectrophotometric assay of neomycin phosphotransferase II1;. Biochem Biophys Res Commun. 1976 Mar 8;69(1):230–236. doi: 10.1016/s0006-291x(76)80297-5. [DOI] [PubMed] [Google Scholar]
  8. Graham M. Y., Weisblum B. 23S ribosomal ribonucleic acid of macrolide-producing streptomycetes contains methylated adenine. J Bacteriol. 1979 Mar;137(3):1464–1467. doi: 10.1128/jb.137.3.1464-1467.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hopwood D. A. Genetic analysis and genome structure in Streptomyces coelicolor. Bacteriol Rev. 1967 Dec;31(4):373–403. doi: 10.1128/br.31.4.373-403.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Majumdar M. K., Majumdar S. K. Relationship between alkaline phosphatase and neomycin formation in Streptomyces fradiae. Biochem J. 1971 May;122(4):397–404. doi: 10.1042/bj1220397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ozanne B., Benveniste R., Tipper D., Davies J. Aminoglycoside antibiotics: inactivation by phosphorylation in Escherichia coli carrying R factors. J Bacteriol. 1969 Nov;100(2):1144–1146. doi: 10.1128/jb.100.2.1144-1146.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Skinner R. H., Cundliffe E. Resistance to the antibiotics viomycin and capreomycin in the Streptomyces species which produce them. J Gen Microbiol. 1980 Sep;120(1):95–104. doi: 10.1099/00221287-120-1-95. [DOI] [PubMed] [Google Scholar]
  13. Stark M., Cundliffe E. On the biological role of ribosomal protein BM-L11 of Bacillus megaterium, homologous with Escherichia coli ribosomal protein L11. J Mol Biol. 1979 Nov 15;134(4):767–769. doi: 10.1016/0022-2836(79)90485-6. [DOI] [PubMed] [Google Scholar]
  14. Sugiyama M., Nimi O., Nomi R. Susceptibility of protein synthesis to neomycin in neomycin-producing Streptomyces fradiae. J Gen Microbiol. 1980 Dec;121(2):477–478. doi: 10.1099/00221287-121-2-477. [DOI] [PubMed] [Google Scholar]
  15. Tai P. C., Wallace B. J., Davis B. D. Selective action of erythromycin on initiating ribosomes. Biochemistry. 1974 Oct 22;13(22):4653–4659. doi: 10.1021/bi00719a029. [DOI] [PubMed] [Google Scholar]
  16. Teraoka H., Tanaka K. Properties of ribosomes from Streptomyces erythreus and Streptomyces griseus. J Bacteriol. 1974 Oct;120(1):316–321. doi: 10.1128/jb.120.1.316-321.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Thompson C. J., Ward J. M., Hopwood D. A. Cloning of antibiotic resistance and nutritional genes in streptomycetes. J Bacteriol. 1982 Aug;151(2):668–677. doi: 10.1128/jb.151.2.668-677.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Thompson C. J., Ward J. M., Hopwood D. A. DNA cloning in Streptomyces: resistance genes from antibiotic-producing species. Nature. 1980 Jul 31;286(5772):525–527. doi: 10.1038/286525a0. [DOI] [PubMed] [Google Scholar]
  19. Thompson J., Cundliffe E. Resistance to thiostrepton, siomycin, and sporangiomycin in actinomycetes that produce them. J Bacteriol. 1980 May;142(2):455–461. doi: 10.1128/jb.142.2.455-461.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Thompson J., Cundliffe E., Stark M. J. The mode of action of berninamycin and mechanism of resistance in the producing organism, Streptomyces bernensis. J Gen Microbiol. 1982 Apr;128(4):875–884. doi: 10.1099/00221287-128-4-875. [DOI] [PubMed] [Google Scholar]
  21. Vining L. C. Antibiotic tolerance in producer organisms. Adv Appl Microbiol. 1979;25:147–168. doi: 10.1016/s0065-2164(08)70149-7. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES