Abstract
The rate of ATP hydrolysis decreases very rapidly during the first 2 sec of calcium uptake. It changes with time in a manner similar to that described for calcium net uptake by other workers, suggesting that the two activities are coupled. The decline in both rates may be ascribed to an inhibitory effect of accumulated calcium on calcium influx and ATPase activity for the following reasons. During the steady state, Ca-Ca and Sr-Ca exchange and the rate of ATP hydrolysis are much slower than the initial rate of net calcium uptake and the associated ATP hydrolysis. If the accumulation of free calcium is prevented by calcium-oxalate precipitation the initial rate of net calcium uptake does not decay during prolonged periods of transport. Furthermore, passive preloading of vesicles with calcium inhibits the rate of hydrolysis in proportion to the extent of preloading. The inhibition of steady-state flux is alleviated by free ATP; i.e., not chelated with magnesium, but not by free ITP.
Full Text
The Full Text of this article is available as a PDF (855.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BURTON K. Formation constants for the complexes of adenosine di- or tri-phosphate with magnesium or calcium ions. Biochem J. 1959 Feb;71(2):388–395. doi: 10.1042/bj0710388. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ebashi S., Endo M. Calcium ion and muscle contraction. Prog Biophys Mol Biol. 1968;18:123–183. doi: 10.1016/0079-6107(68)90023-0. [DOI] [PubMed] [Google Scholar]
- Eggleton P., Elsden S. R., Gough N. The estimation of creatine and of diacetyl. Biochem J. 1943;37(5):526–529. doi: 10.1042/bj0370526. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harigaya S., Ogawa Y., Sugita H. Calcium binding activity of microsomal fraction of rabbit rad muscle. J Biochem. 1968 Mar;63(3):324–331. [PubMed] [Google Scholar]
- MARTONOSI A. ROLE OF PHOSPHOLIPIDS IN ATPASE ACTIVITY AND CA TRANSPORT OF FRAGMENTED SARCOPLASMIC RETICULUM. Fed Proc. 1964 Sep-Oct;23:913–921. [PubMed] [Google Scholar]
- Makinose M., Hasselbach W. Der Einfluss von Oxalat auf den Calcium-Transport isolierter Vesikel des sarkoplasmatischen Reticulum. Biochem Z. 1965 Dec 31;343(4):360–382. [PubMed] [Google Scholar]
- Martonosi A. Sarcoplasmic reticulum. IV. Solubilization of microsomal adenosine triphosphatase. J Biol Chem. 1968 Jan 10;243(1):71–81. [PubMed] [Google Scholar]
- OHNISHI T., EBASHI S. THE VELOCITY OF CALCIUM BINDING OF ISOLATED SARCOPLASMIC RETICULUM. J Biochem. 1964 Jun;55:599–603. doi: 10.1093/oxfordjournals.jbchem.a127932. [DOI] [PubMed] [Google Scholar]
- Peachey L. D. The sarcoplasmic reticulum and transverse tubules of the frog's sartorius. J Cell Biol. 1965 Jun;25(3 Suppl):209–231. doi: 10.1083/jcb.25.3.209. [DOI] [PubMed] [Google Scholar]
- TAUSSKY H. H., SHORR E. A microcolorimetric method for the determination of inorganic phosphorus. J Biol Chem. 1953 Jun;202(2):675–685. [PubMed] [Google Scholar]
- Weber A. Parallel response of myofibrillar contraction and relaxation to four different nucleoside triphophates. J Gen Physiol. 1969 Jun;53(6):781–791. doi: 10.1085/jgp.53.6.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weber A. The mechanism of the action of caffeine on sarcoplasmic reticulum. J Gen Physiol. 1968 Nov;52(5):760–772. doi: 10.1085/jgp.52.5.760. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Winegrad S. Intracellular calcium movements of frog skeletal muscle during recovery from tetanus. J Gen Physiol. 1968 Jan;51(1):65–83. doi: 10.1085/jgp.51.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamamoto T., Tonomura Y. Reaction mechanism of the Ca++ -dependent ATPase of sarcoplasmic reticulum from skeletal muscle. II. Intermediate formation of phosphoryl protein. J Biochem. 1968 Aug;64(2):137–145. doi: 10.1093/oxfordjournals.jbchem.a128873. [DOI] [PubMed] [Google Scholar]