Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1971 Jan 1;57(1):71–92. doi: 10.1085/jgp.57.1.71

Synaptic Electrogenesis in Eel Electroplaques

Francisco Ruiz-Manresa 1, Harry Grundfest 1
PMCID: PMC2203097  PMID: 4321726

Abstract

Whether evoked by neural or by chemical stimulation, the synaptic membrane of eel electroplaques contributes a depolarizing electrogenesis that is due to an increased conductance for Na and K. The reversal potential (ES) is the same for the two modes of synaptic activation. It is inside-positive by about 30–60 mv, or about midway between the emf's of the ionic batteries for Na (E Na) and K(E K). The total conductance contributed by synaptic activity (GS) varied over a fivefold range, but the individual ionic branches, G SSNa, and G SSK, change nearly equally so that the ratio G SSNa:G SSK is near unity. G SSK increases independently of the presence or absence of Na in the bathing medium, and independently of the presence or absence of the electrically excitable G K channels. When activated, the synaptic membrane appears to be slightly permeable to Ca and Mg. When the membrane is depolarized into inside positivity the conductance of the synaptic components decreases and approaches zero for large inside-positive values. Thus, the synaptic components become electrically excitable when the potential across the membrane becomes inside-positive, responding as do the nonsynaptic components, with depolarizing inactivation.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALTAMIRANO M., COATES C. W., GRUNDFEST H. Mechanisms of direct and neural excitability in electroplaques of electric eel. J Gen Physiol. 1955 Jan 20;38(3):319–360. doi: 10.1085/jgp.38.3.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. ALTAMIRANO M., COATES C. W., GRUNDFEST H., NACHMANSOHN D. Electrical activity in electric tissue. III. Modifications of electrical activity by acetylcholine and related compounds. Biochim Biophys Acta. 1955 Apr;16(4):449–463. doi: 10.1016/0006-3002(55)90263-8. [DOI] [PubMed] [Google Scholar]
  3. Bennett M. V., Grundfest H. Analysis of depolarizing and hyperpolarizing inactivation responses in gymnotid electroplaques. J Gen Physiol. 1966 Sep;50(1):141–169. doi: 10.1085/jgp.50.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bennett M. V., Wurzel M., Grundfest H. The Electrophysiology of Electric Organs of Marine Electric Fishes : I. Properties of electroplaques of Torpedo nobiliana. J Gen Physiol. 1961 Mar 1;44(4):757–804. doi: 10.1085/jgp.44.4.757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. FATT P., KATZ B. An analysis of the end-plate potential recorded with an intracellular electrode. J Physiol. 1951 Nov 28;115(3):320–370. doi: 10.1113/jphysiol.1951.sp004675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. FESSARD A., TAUC L. Comparaison entre la dissipation des potentiels post-synaptiques et électrotoniques dans le soma neuronique de l'Aplysie. J Physiol (Paris) 1957 Jan-Mar;49(1):162–164. [PubMed] [Google Scholar]
  7. GRUNDFEST H. Ionic mechanisms in electrogenesis. Ann N Y Acad Sci. 1961 Sep 6;94:405–457. doi: 10.1111/j.1749-6632.1961.tb35554.x. [DOI] [PubMed] [Google Scholar]
  8. GRUNDFEST H. The mechanisms of discharge of the electric organs in relation to general and comparative electrophysiology. Prog Biophys Biophys Chem. 1957;7:1–85. [PubMed] [Google Scholar]
  9. Gage P. W., Moore J. W. Synaptic current at the squid giant synapse. Science. 1969 Oct 24;166(3904):510–512. doi: 10.1126/science.166.3904.510. [DOI] [PubMed] [Google Scholar]
  10. Grundfest H. Comparative electrobiology of excitable membranes. Adv Comp Physiol Biochem. 1966;2:1–116. doi: 10.1016/b978-0-12-395511-1.50006-8. [DOI] [PubMed] [Google Scholar]
  11. Grundfest H. Heterogeneity of excitable membrane: electrophysiological and pharmacological evidence and some consequences. Ann N Y Acad Sci. 1966 Jul 14;137(2):901–949. doi: 10.1111/j.1749-6632.1966.tb50208.x. [DOI] [PubMed] [Google Scholar]
  12. HAGIWARA S., SAITO N. Membrane potential change and membrane current in supramedullary nerve cell of puffer. J Neurophysiol. 1959 Mar;22(2):204–221. doi: 10.1152/jn.1959.22.2.204. [DOI] [PubMed] [Google Scholar]
  13. HAGIWARA S., WATANABE A., SAITO N. Potential changes in syncytial neurons of lobster cardiac ganglion. J Neurophysiol. 1959 Sep;22:554–572. doi: 10.1152/jn.1959.22.5.554. [DOI] [PubMed] [Google Scholar]
  14. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. MARTIN A. R., PILAR G. DUAL MODE OF SYNAPTIC TRANSMISSION IN THE AVIAN CILIARY GANGLION. J Physiol. 1963 Sep;168:443–463. doi: 10.1113/jphysiol.1963.sp007202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Miledi R. Transmitter action in the giant synapse of the squid. Nature. 1969 Sep 20;223(5212):1284–1286. doi: 10.1038/2231284a0. [DOI] [PubMed] [Google Scholar]
  17. Morlock M. L., Benamy D. A., Grundfest H. Analysis of spike electrogenesis of Eel electroplaques with phase plane and impedance measurements. J Gen Physiol. 1968 Jul;52(1):22–45. doi: 10.1085/jgp.52.1.22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Motokizawa F., Reuben J. P., Grundfest H. Ionic permeability of the inhibitory postsynaptic membrane of lobster muscle fibers. J Gen Physiol. 1969 Oct;54(4):437–461. doi: 10.1085/jgp.54.4.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. NISHI S., KOKETSU K. Electrical properties and activities of single sympathetic neurons in frogs. J Cell Comp Physiol. 1960 Feb;55:15–30. doi: 10.1002/jcp.1030550104. [DOI] [PubMed] [Google Scholar]
  20. REUBEN J. P., WERMAN R., GRUNDFEST H. The ionic mechanisms of hyperpolarizing responses in lobster muscle fibers. J Gen Physiol. 1961 Nov;45:243–265. doi: 10.1085/jgp.45.2.243. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES