Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1971 Mar 1;57(3):363–384. doi: 10.1085/jgp.57.3.363

The Spectral Sensitivity of Single Units in the Nucleus Rotundus of Pigeon, Columba livia

A M Granda 1, S Yazulla 1
PMCID: PMC2203102  PMID: 5544800

Abstract

Responses to diffuse monochromatic light were recorded from single units in the diencephalon of pigeon. Units were both excited and inhibited by light stimulation. Intensity-response functions based on latency measures to the first spike after stimulation were used to generate action spectra. One class of spectral sensitivity functions presumably from rods, showed peak sensitivities near 500 nm: these functions were unaffected by changing criterion values used to generate the functions. A second class of cone functions showed multiple peak sensitivities at 540 nm and 600–620 nm. These units shifted their peak sensitivities with a change in criterion values. Unit response types tended to be localized differentially in the nucleus rotundus. Excitatory units were located in the dorsal half of the nucleus, while inhibitory units were located in the ventral half, with a few exceptions. An attempt was made to integrate the present findings with previous behavioral, electrophysiological, photochemical, and anatomical data in the pigeon.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLOUGH D. S. Spectral sensitivity in the pigeon. J Opt Soc Am. 1957 Sep;47(9):827–833. doi: 10.1364/josa.47.000827. [DOI] [PubMed] [Google Scholar]
  2. COWAN W. M., ADAMSON L., POWELL T. P. An experimental study of the avian visual system. J Anat. 1961 Oct;95:545–563. [PMC free article] [PubMed] [Google Scholar]
  3. DE VALOIS R. L., SMITH C. J., KAROLY A. J., KITAI S. T. Electrical responses of primate visual system. I. Different layers of macaque lateral geniculate nucleus. J Comp Physiol Psychol. 1958 Dec;51(6):662–668. doi: 10.1037/h0038922. [DOI] [PubMed] [Google Scholar]
  4. DEVALOIS R. L. BEHAVIORAL AND ELECTROPHYSIOLOGICAL STUDIES OF PRIMATE VISION. Contrib Sens Physiol. 1965;14:137–178. [PubMed] [Google Scholar]
  5. DONNER K. O. The spectral sensitivity of the pigeon's retinal elements. J Physiol. 1953 Dec 29;122(3):524–537. doi: 10.1113/jphysiol.1953.sp005018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. GRANDA A. M., BIERSDORF W. R. ELECTRICAL RESPONSES OF THE HUMAN EYE FOLLOWING INTENSE CHROMATIC PRE-EXPOSURES. Vision Res. 1963 Dec;61:431–445. doi: 10.1016/0042-6989(63)90094-4. [DOI] [PubMed] [Google Scholar]
  7. GREEN J. D. A simple microelectrode for recording from the central nervous system. Nature. 1958 Oct 4;182(4640):962–962. doi: 10.1038/182962a0. [DOI] [PubMed] [Google Scholar]
  8. Granda A. M., Stirling C. E. The spectral sensitivity of the turtle's eye to very dim lights. Vision Res. 1966 Apr;6(3):143–152. doi: 10.1016/0042-6989(66)90036-8. [DOI] [PubMed] [Google Scholar]
  9. Hodos W., Karten H. J. Brightness and pattern discrimination deficits in the pigeon after lesions of nucleus rotundus. Exp Brain Res. 1966;2(2):151–167. doi: 10.1007/BF00240403. [DOI] [PubMed] [Google Scholar]
  10. Hubel D. H. Tungsten Microelectrode for Recording from Single Units. Science. 1957 Mar 22;125(3247):549–550. doi: 10.1126/science.125.3247.549. [DOI] [PubMed] [Google Scholar]
  11. Ikeda H. The spectral sensitivity of the pigeon (Columba livia). Vision Res. 1965 Jan;5(1):19–36. doi: 10.1016/0042-6989(65)90072-6. [DOI] [PubMed] [Google Scholar]
  12. Karten H. J., Revzin A. M. The afferent connections of the nucleus rotundus in the pigeon. Brain Res. 1966 Oct;2(4):368–377. doi: 10.1016/0006-8993(66)90006-0. [DOI] [PubMed] [Google Scholar]
  13. King-Smith P. E. Absorption spectra and function of the coloured oil drops in the pigeon retina. Vision Res. 1969 Nov;9(11):1391–1399. doi: 10.1016/0042-6989(69)90075-3. [DOI] [PubMed] [Google Scholar]
  14. MATURANA H. R., LETTVIN J. Y., MCCULLOCH W. S., PITTS W. H. Anatomy and physiology of vision in the frog (Rana pipiens). J Gen Physiol. 1960 Jul;43(6):129–175. doi: 10.1085/jgp.43.6.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Michael C. R. Receptive fields of single optic nerve fibers in a mammal with an all-cone retina. 3. Opponent color units. J Neurophysiol. 1968 Mar;31(2):268–282. doi: 10.1152/jn.1968.31.2.268. [DOI] [PubMed] [Google Scholar]
  16. Pickering S. G. The extremely long latency response from on-off retinal ganglion cells: relationship to dark adaptation. Vision Res. 1968 Apr;8(4):383–387. doi: 10.1016/0042-6989(68)90107-7. [DOI] [PubMed] [Google Scholar]
  17. Pickering S. G., Varjú D. Delayed responses of ganglion cells in the frog retina: the influence of stimulus parameters upon the length of the delay time. Vision Res. 1969 Aug;9(8):865–879. doi: 10.1016/0042-6989(69)90094-7. [DOI] [PubMed] [Google Scholar]
  18. Pickering S. G., Varjú D. Ganglion cells in the frog retina: inhibitory receptive field and long-latency response. Nature. 1967 Jul 29;215(5100):545–546. doi: 10.1038/215545a0. [DOI] [PubMed] [Google Scholar]
  19. Sillman A. J. The visual pigments of several species of birds. Vision Res. 1969 Sep;9(9):1063–1077. doi: 10.1016/0042-6989(69)90048-0. [DOI] [PubMed] [Google Scholar]
  20. Wiesel T. N., Hubel D. H. Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. J Neurophysiol. 1966 Nov;29(6):1115–1156. doi: 10.1152/jn.1966.29.6.1115. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES