Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1971 Apr 1;57(4):435–447. doi: 10.1085/jgp.57.4.435

Spectral Sensitivity of the Barnacle, Balanus amphitrite

Wilford P Stratten 1, Thomas E Ogden 1
PMCID: PMC2203108  PMID: 4323488

Abstract

The extracellular ocellar potential was used to evaluate the spectral sensitivity of the ocellus of the barnacle, Balanus amphitrite. Maximum relative sensitivity was at 530–540 nm. Studies with chromatic adapting lights suggest that the receptors contain a single photopigment. The spectra were relatively broader in the dark as compared to the light-adapted state. This effect was shown to be due to an increase in the slope of the amplitude-intensity function, caused by light adaptation. Studies of tapetal fluorescence and corneal transmission indicate little effect of the ocellar media on the determination of sensitivity.

Full Text

The Full Text of this article is available as a PDF (755.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown H. M., Hagiwara S., Koike H., Meech R. M. Membrane properties of a barnacle photoreceptor examined by the voltage clamp technique. J Physiol. 1970 Jun;208(2):385–413. doi: 10.1113/jphysiol.1970.sp009127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Carricaburu P., Chardenot P. Spectres d'absorption de la cornee de quelques arthropodes. Vision Res. 1967 Jan;7(1):43–50. doi: 10.1016/0042-6989(67)90024-7. [DOI] [PubMed] [Google Scholar]
  3. DARTNALL H. J. A. The interpretation of spectral sensitivity curves. Br Med Bull. 1953;9(1):24–30. doi: 10.1093/oxfordjournals.bmb.a074302. [DOI] [PubMed] [Google Scholar]
  4. Hamasaki D. I. The ERG-determined spectral sensitivity of the octopus. Vision Res. 1968 Aug;8(8):1013–1021. doi: 10.1016/0042-6989(68)90074-6. [DOI] [PubMed] [Google Scholar]
  5. LOEWENSTEIN W. R. Excitation and inactivation in a receptor membrane. Ann N Y Acad Sci. 1961 Sep 6;94:510–534. doi: 10.1111/j.1749-6632.1961.tb35556.x. [DOI] [PubMed] [Google Scholar]
  6. Lipetz L. E. The transfer functions of sensory intensity in the nervous system. Vision Res. 1969 Oct;9(10):1205–1234. doi: 10.1016/0042-6989(69)90110-2. [DOI] [PubMed] [Google Scholar]
  7. Naka K. I. Computer assisted analysis of S-potentials. Biophys J. 1969 Jun;9(6):845–859. doi: 10.1016/S0006-3495(69)86422-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Naka K. I., Rushton W. A. An attempt to analyse colour reception by electrophysiology. J Physiol. 1966 Aug;185(3):556–586. doi: 10.1113/jphysiol.1966.sp008002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Naka K. I., Rushton W. A. S-potentials from colour units in the retina of fish (Cyprinidae). J Physiol. 1966 Aug;185(3):536–555. doi: 10.1113/jphysiol.1966.sp008001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Naka K. I., Rushton W. A. S-potentials from luminosity units in the retina of fish (Cyprinidae). J Physiol. 1966 Aug;185(3):587–599. doi: 10.1113/jphysiol.1966.sp008003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Penn R. D., Hagins W. A. Signal transmission along retinal rods and the origin of the electroretinographic a-wave. Nature. 1969 Jul 12;223(5202):201–204. doi: 10.1038/223201a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES