Abstract
The resting membrane of a barnacle muscle fiber is mostly permeable to cations in a solution of pH 7.7 whereas it becomes primarily permeable to anions if the pH is below 4.0. Mechanisms of ion permeation for various monovalent cations and anions were investigated at pH 7.7 and 3.9, respectively. Permeability ratios were obtained from the relationship between the membrane potential and the concentration of the test ions, and ionic conductances from current-voltage relations of the membrane. The permeability sequence for anions (SCN > I > NO3 > Br > ClO3 > Cl > BrO3 > IO3) was different from the conductance sequence for anions (Br, Cl > ClO3, NO3 > SCN). In contrast, the permeability and conductance sequences were identical for cations (K > Rb > Cs > Na > Li). The results suggest that anion permeation is governed by membrane charges while cation permeation is via some electrically neutral mechanism.
Full Text
The Full Text of this article is available as a PDF (1.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ADRIAN R. H. Internal chloride concentration and chloride efflux of frog muscle. J Physiol. 1961 May;156:623–632. doi: 10.1113/jphysiol.1961.sp006698. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brinley F. J., Jr Sodium and potassium fluxes in isolated barnacle muscle fibers. J Gen Physiol. 1968 Apr;51(4):445–477. doi: 10.1085/jgp.51.4.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Conti F., Eisenman G. The steady state properties of ion exchange membranes with fixed sites. Biophys J. 1965 Jul;5(4):511–530. doi: 10.1016/S0006-3495(65)86732-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Conti F., Eisenman G. The steady-state properties of an ion exchange membrane with mobile sites. Biophys J. 1966 May;6(3):227–246. doi: 10.1016/S0006-3495(66)86653-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DELCASTILLO J., DEMELLO W. C., MORALES T. INFLUENCE OF SOME IONS ON THE MEMBRANE POTENTIAL OF ASCARIS MUSCLE. J Gen Physiol. 1964 Sep;48:129–140. doi: 10.1085/jgp.48.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Diamond J. M., Wright E. M. Biological membranes: the physical basis of ion and nonelectrolyte selectivity. Annu Rev Physiol. 1969;31:581–646. doi: 10.1146/annurev.ph.31.030169.003053. [DOI] [PubMed] [Google Scholar]
- Eisenberg R. S., Gage P. W. Frog skeletal muscle fibers: changes in electrical properties after disruption of transverse tubular system. Science. 1967 Dec 29;158(3809):1700–1701. doi: 10.1126/science.158.3809.1700. [DOI] [PubMed] [Google Scholar]
- Eisenman G., Ciani S. M., Szabo G. Some theoretically expected and experimentally observed properties of lipid bilayer membranes containing neutral molecular carriers of ions. Fed Proc. 1968 Nov-Dec;27(6):1289–1304. [PubMed] [Google Scholar]
- GIRARDIER L., REUBEN J. P., BRANDT P. W., GRUNDFEST H. EVIDENCE FOR ANION-PERMSELECTIVE MEMBRANE IN CRAYFISH MUSCLE FIBERS AND ITS POSSIBLE ROLE IN EXCITATION-CONTRACTION COUPLING. J Gen Physiol. 1963 Sep;47:189–214. doi: 10.1085/jgp.47.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gainer H., Grundfest H. Permeability of alkali metal cations in lobster muscle. A comparison of electrophysiological and osmometric analyses. J Gen Physiol. 1968 Mar;51(3):399–425. doi: 10.1085/jgp.51.3.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gayton D. C., Hinke J. A. The location of chloride in single striated muscle fibers of the giant barnacle. Can J Physiol Pharmacol. 1968 Mar;46(2):213–219. doi: 10.1139/y68-035. [DOI] [PubMed] [Google Scholar]
- HAGIWARA S., CHICHIBU S., NAKA K. I. THE EFFECTS OF VARIOUS IONS ON RESTING AND SPIKE POTENTIALS OF BARNACLE MUSCLE FIBERS. J Gen Physiol. 1964 Sep;48:163–179. doi: 10.1085/jgp.48.1.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HARRIS E. J. Anion interaction in frog muscle. J Physiol. 1958 Apr 30;141(2):351–365. doi: 10.1113/jphysiol.1958.sp005979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., HOROWICZ P. The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J Physiol. 1959 Oct;148:127–160. doi: 10.1113/jphysiol.1959.sp006278. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HOYLE G., SMYTH T., Jr NEUROMUSCULAR PHYSIOLOGY OF GIANT MUSCLE FIBERS OF A BARNACLE, BALANUS NUBILUS DARWIN. Comp Biochem Physiol. 1963 Dec;10:291–314. doi: 10.1016/0010-406x(63)90229-9. [DOI] [PubMed] [Google Scholar]
- HUTTER O. F., NOBLE D. Anion conductance of cardiac muscle. J Physiol. 1961 Jul;157:335–350. doi: 10.1113/jphysiol.1961.sp006726. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HUTTER O. F., PADSHA S. M. Effect of nitrate and other anions on the membrane resistance of frog skeletal muscle. J Physiol. 1959 Apr 23;146(1):117–132. doi: 10.1113/jphysiol.1959.sp006182. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hagiwara S., Gruener R., Hayashi H., Sakata H., Grinnell A. D. Effect of external and internal pH changes on K and Cl conductances in the muscle fiber membrane of a giant barnacle. J Gen Physiol. 1968 Nov;52(5):773–792. doi: 10.1085/jgp.52.5.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hagiwara S., Takahashi K. Resting and spike potentials of skeletal muscle fibres of salt-water elasmobranch and teleost fish. J Physiol. 1967 Jun;190(3):499–518. doi: 10.1113/jphysiol.1967.sp008224. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ilani A. Interaction between cations in hydrophobic solvent-saturated filters containing fixed negative charges. Biophys J. 1966 May;6(3):329–352. doi: 10.1016/S0006-3495(66)86660-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pressman B. C., Harris E. J., Jagger W. S., Johnson J. H. Antibiotic-mediated transport of alkali ions across lipid barriers. Proc Natl Acad Sci U S A. 1967 Nov;58(5):1949–1956. doi: 10.1073/pnas.58.5.1949. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sandblom J. P. A method to relate steady-state ionic currents, conductances, and membrane potential in ion exchange membranes with unknown thermodynamic properties. Biophys J. 1967 May;7(3):243–265. doi: 10.1016/S0006-3495(67)86586-X. [DOI] [PMC free article] [PubMed] [Google Scholar]