Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1971 May 1;57(5):557–575. doi: 10.1085/jgp.57.5.557

Effects of Lateral Inhibition on Fluctuations of the Impulse Rate

Robert Shapley 1
PMCID: PMC2203115  PMID: 4324168

Abstract

Inhibition from neighboring eccentric cells has an effect on the variability of firing of a given eccentric cell. The reduction in the average impulse rate which is caused by inhibition decreases the variance of the impulse rate. However, this reduction of the average rate increases the coefficient of variation of the impulse rate. Inhibitory synaptic noise should add to the low frequency portion of the variance spectrum of the impulse rate. This occurs because of the slow time course of inhibitory synaptic potentials. As a consequence, inhibition decreases the signal-to-noise ratio for low frequency modulated stimuli.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BISHOP P. O., LEVICK W. R., WILLIAMS W. O. STATISTICAL ANALYSIS OF THE DARK DISCHARGE OF LATERAL GENICULATE NEURONES. J Physiol. 1964 Apr;170:598–612. doi: 10.1113/jphysiol.1964.sp007352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Calvin W. H., Stevens C. F. Synaptic noise and other sources of randomness in motoneuron interspike intervals. J Neurophysiol. 1968 Jul;31(4):574–587. doi: 10.1152/jn.1968.31.4.574. [DOI] [PubMed] [Google Scholar]
  3. Dodge F. A., Shapley R. M., Knight B. W. Linear systems analysis of the Limulus retina. Behav Sci. 1970 Jan;15(1):24–36. doi: 10.1002/bs.3830150104. [DOI] [PubMed] [Google Scholar]
  4. GERSTEIN G. L., MANDELBROT B. RANDOM WALK MODELS FOR THE SPIKE ACTIVITY OF A SINGLE NEURON. Biophys J. 1964 Jan;4:41–68. doi: 10.1016/s0006-3495(64)86768-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Geisler C. D., Goldberg J. M. A stochastic model of the repetitive activity of neurons. Biophys J. 1966 Jan;6(1):53–69. doi: 10.1016/S0006-3495(66)86639-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Knight B. W., Toyoda J. I., Dodge F. A., Jr A quantitative description of the dynamics of excitation and inhibition in the eye of Limulus. J Gen Physiol. 1970 Oct;56(4):421–437. doi: 10.1085/jgp.56.4.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. RATLIFF F., HARTLINE H. K., MILLER W. H. Spatial and temporal aspects of retinal inhibitory interaction. J Opt Soc Am. 1963 Jan;53:110–120. doi: 10.1364/josa.53.000110. [DOI] [PubMed] [Google Scholar]
  8. Ratliff F., Knight B. W., Graham N. On tuning and amplification by lateral inhibition. Proc Natl Acad Sci U S A. 1969 Mar;62(3):733–740. doi: 10.1073/pnas.62.3.733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ratliff F., Knight B. W., Toyoda J., Hartline H. K. Enhancement of flicker by lateral inhibition. Science. 1967 Oct 20;158(3799):392–393. doi: 10.1126/science.158.3799.392. [DOI] [PubMed] [Google Scholar]
  10. Shapley R. Fluctuations of the impulse rate in Limulus eccentric cells. J Gen Physiol. 1971 May;57(5):539–556. doi: 10.1085/jgp.57.5.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Stein R. B. Some models of neuronal variability. Biophys J. 2008 Dec 31;7(1):37–68. doi: 10.1016/S0006-3495(67)86574-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. TOMITA T. Mechanism of lateral inhibition in eye of Limulus. J Neurophysiol. 1958 Sep;21(5):419–429. doi: 10.1152/jn.1958.21.5.419. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES