Abstract
The transport properties of potassium (K) and sodium (Na) were studied in single distal tubules of Amphiuma using free-flow micropuncture techniques and stationary microperfusion methods. The transepithelial movement of labeled potassium was measured utilizing a three-compartment system in series in which the time course of tracer disappearance from the lumen was followed. Under control conditions, in blood- and doubly-perfused kidneys, extensive active net reabsorption of sodium and potassium obtains along single distal tubules. Tubular potassium reabsorption is abolished by ouabain at a concentration of 5 x 10-6 M. Significant net secretion of K can be induced by exposing Amphiuma to a high K environment (100 mM KCl) or by adding acetazoleamide (1 x 10-4 M) to the perfusion fluid. Transepithelial movement of potassium involves mixing with only a small fraction of total distal tubular cell potassium. This transport pool of potassium increases significantly with the transition from tubular net reabsorption to net secretion. Indirect evidence is presented which indicates that increased active K uptake across the peritubular cell boundary may be of prime importance during states of net K secretion.
Full Text
The Full Text of this article is available as a PDF (1.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BOTT P. A. Micropuncture study of renal excretion of water, K, Na, and Cl in Necturus. Am J Physiol. 1962 Oct;203:662–666. doi: 10.1152/ajplegacy.1962.203.4.662. [DOI] [PubMed] [Google Scholar]
- Edmonds C. J. Kinetics of potassium in colonic mucosa of normal and sodium-depleted rats. J Physiol. 1969 Aug;203(3):533–554. doi: 10.1113/jphysiol.1969.sp008878. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GIEBISCH G. Electrical potential measurements on single nephrons of Necturus. J Cell Physiol. 1958 Apr;51(2):221–239. doi: 10.1002/jcp.1030510208. [DOI] [PubMed] [Google Scholar]
- GIEBISCH G. Measurements of electrical potential differences on single nephrons of the perfused Necturus kidney. J Gen Physiol. 1961 Mar;44:659–678. doi: 10.1085/jgp.44.4.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GIEBISCH G. Measurements of pH, chloride and insulin concentrations in proximal tubule fluid of necturus. Am J Physiol. 1956 Apr;185(1):171–174. doi: 10.1152/ajplegacy.1956.185.1.171. [DOI] [PubMed] [Google Scholar]
- GIEBISCH G., WINDHAGER E. E. RENAL TUBULAR TRANSFER OF SODIUM, CHLORIDE AND POTASSIUM. Am J Med. 1964 May;36:643–669. doi: 10.1016/0002-9343(64)90178-0. [DOI] [PubMed] [Google Scholar]
- Giebisch G. Functional organization of proximal and distal tubular electrolyte transport. Nephron. 1969;6(3):260–281. doi: 10.1159/000179733. [DOI] [PubMed] [Google Scholar]
- Giebisch G., Klose R. M., Malnic G. Renal tubular potassium transport. Bull Schweiz Akad Med Wiss. 1967 Dec;23(3):287–312. [PubMed] [Google Scholar]
- Giebisch G., Malnic G., Klose R. M., Windhager E. E. Effect of ionic substitutions on distal potential differences in rat kidney. Am J Physiol. 1966 Sep;211(3):560–568. doi: 10.1152/ajplegacy.1966.211.3.560. [DOI] [PubMed] [Google Scholar]
- Giebisch G. Some electrical properties of single renal tubule cells. J Gen Physiol. 1968 May;51(5 Suppl):315S+–315S+. [PubMed] [Google Scholar]
- Harvey W. R., Zerahn K. Kinetics and route of active K-transport in the isolated midgut of Hyalophora cecropia. J Exp Biol. 1969 Apr;50(2):297–306. doi: 10.1242/jeb.50.2.297. [DOI] [PubMed] [Google Scholar]
- Hegel U., Frömter E., Wick T. Der elektrische Wandwiderstand des proximalen Konvolutes der Rattenniere. Pflugers Arch Gesamte Physiol Menschen Tiere. 1967;294(4):274–290. [PubMed] [Google Scholar]
- MALNIC G., KLOSE R. M., GIEBISCH G. MICROPUNCTURE STUDY OF RENAL POTASSIUM EXCRETION IN THE RAT. Am J Physiol. 1964 Apr;206:674–686. doi: 10.1152/ajplegacy.1964.206.4.674. [DOI] [PubMed] [Google Scholar]
- Malnic G., Klose R. M., Giebisch G. Microperfusion study of distal tubular potassium and sodium transfer in rat kidney. Am J Physiol. 1966 Sep;211(3):548–559. doi: 10.1152/ajplegacy.1966.211.3.548. [DOI] [PubMed] [Google Scholar]
- Malnic G., Klose R. M., Giebisch G. Micropuncture study of distal tubular potassium and sodium transport in rat nephron. Am J Physiol. 1966 Sep;211(3):529–547. doi: 10.1152/ajplegacy.1966.211.3.529. [DOI] [PubMed] [Google Scholar]
- Maren T. H. Carbonic anhydrase: chemistry, physiology, and inhibition. Physiol Rev. 1967 Oct;47(4):595–781. doi: 10.1152/physrev.1967.47.4.595. [DOI] [PubMed] [Google Scholar]
- Maude D. L., Shehadeh I., Solomon A. K. Sodium and water transport in single perfused distal tubules of Necturus kidney. Am J Physiol. 1966 Oct;211(4):1043–1049. doi: 10.1152/ajplegacy.1966.211.4.1043. [DOI] [PubMed] [Google Scholar]
- ORLOFF J., BURG M. Effect of strophanthidin on electrolyte excretion in the chicken. Am J Physiol. 1960 Jul;199:49–54. doi: 10.1152/ajplegacy.1960.199.1.49. [DOI] [PubMed] [Google Scholar]
- SHIPP J. C., HANENSON I. B., WINDHAGER E. E., SCHATZMANN H. J., WHITTEMBURY G., YOSHIMURA H., SOLOMON A. K. Single proximal tubules of the Necturus kidney; methods for micropuncture and microperfusion. Am J Physiol. 1958 Dec;195(3):563–569. doi: 10.1152/ajplegacy.1958.195.3.563. [DOI] [PubMed] [Google Scholar]
- Sullivan W. J. Electrical potential differences across distal renal tubules of Amphiuma. Am J Physiol. 1968 May;214(5):1096–1103. doi: 10.1152/ajplegacy.1968.214.5.1096. [DOI] [PubMed] [Google Scholar]
- ULLRICH K. J., SCHMIDT-NIELSON B., O'DELL R., PEHLING G., GOTTSCHALK C. W., LASSITER W. E., MYLLE M. Micropuncture study of composition of proximal and distal tubular fluid in rat kidney. Am J Physiol. 1963 Apr;204:527–531. doi: 10.1152/ajplegacy.1963.204.4.527. [DOI] [PubMed] [Google Scholar]
- USSING H. H., WINDHAGER E. E. NATURE OF SHUNT PATH AND ACTIVE SODIUM TRANSPORT PATH THROUGH FROG SKIN EPITHELIUM. Acta Physiol Scand. 1964 Aug;61:484–504. [PubMed] [Google Scholar]
- Vieira F. L., Malnic G. Hydrogen ion secretion by rat renal cortical tubules as studied by an antimony microelectrode. Am J Physiol. 1968 Apr;214(4):710–718. doi: 10.1152/ajplegacy.1968.214.4.710. [DOI] [PubMed] [Google Scholar]
- WINDHAGER E. E., GIEBISCH G. ELECTROPHYSIOLOGY OF THE NEPHRON. Physiol Rev. 1965 Apr;45:214–244. doi: 10.1152/physrev.1965.45.2.214. [DOI] [PubMed] [Google Scholar]
- WINDHAGER E. E., GIEBISCH G. Micropuncture study of renal tubular transfer of sodium chloride in the rat. Am J Physiol. 1961 Mar;200:581–590. doi: 10.1152/ajplegacy.1961.200.3.581. [DOI] [PubMed] [Google Scholar]
- Wiederholt M. Mikropunktionsuntersuchungen am proximalen und distalen Konvolut der Rattenniere über den Einfluss von Actinomycin D auf den mineralocorticoidabhängigen Na-Transport. Pflugers Arch Gesamte Physiol Menschen Tiere. 1966;292(4):334–342. [PubMed] [Google Scholar]
