Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1971 Jun 1;57(6):639–663. doi: 10.1085/jgp.57.6.639

Studies on the Electrical Potential Profile across Rabbit Ileum

Effects of sugars and amino acids on transmural and transmucosal electrical potential differences

Richard C Rose 1, Stanley G Schultz 1
PMCID: PMC2203124  PMID: 5576764

Abstract

When isolated strips of mucosal rabbit ileum are bathed by physiological electrolyte solution the electrical potential difference (PD) across the brush border (ψmc) averages 36 mv, cell interior negative. Rapid replacement of Na in the mucosal solution with less permeant cations, Tris or choline, results in an immediate hyperpolarization of ψmc. Conversely, replacement of choline in the mucosal solution with Na results in an abrupt depolarization of ψmc. These findings indicate that Na contributes to the conductance across the brush border. The presence of actively transported sugars or amino acids in the mucosal solution brings about a marked depolarization of ψmc and a smaller increase in the transmural PD (Δψms). It appears that the Na influx that is coupled to the influxes of amino acids and sugars is electrogenic and responsible for the depolarization of ψmc. Under control conditions Δψms can be attributed to the depolarization of ψmc together with the presence of a low resistance transepithelial shunt, possibly the lateral intercellular spaces. However, quantitatively similar effects of amino acids on ψmc are also seen in tissues poisoned with metabolic inhibitors or ouabain. Under these conditions Δψmc is much smaller than under control conditions. Thus, the depolarization of ψmc might not account for the entire Δψms, observed in nonpoisoned tissue. An additional electromotive force which is directly coupled to metabolic processes might contribute to the normal Δψms.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ASANO T. METABOLIC DISTURBANCES AND SHORT-CIRCUIT CURRENT ACROSS INTESTINAL WALL OF RAT. Am J Physiol. 1964 Aug;207:415–422. doi: 10.1152/ajplegacy.1964.207.2.415. [DOI] [PubMed] [Google Scholar]
  2. Armstrong W. M., Musselman D. L., Reitzug H. C. Sodium, potassium, and water content of isolated bullfrog small intestinal epithelia. Am J Physiol. 1970 Oct;219(4):1023–1026. doi: 10.1152/ajplegacy.1970.219.4.1023. [DOI] [PubMed] [Google Scholar]
  3. BARRY R. J., DIKSTEIN S., MATTHEWS J., SMYTH D. H., WRIGHT E. M. ELECTRICAL POTENTIALS ASSOCIATED WITH INTESTINAL SUGAR TRANSFER. J Physiol. 1964 Jun;171:316–338. doi: 10.1113/jphysiol.1964.sp007379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barry R. J., Eggenton J., Smyth D. H. Sodium pumps in the rat small intestine in relation to hexose transfer and metabolism. J Physiol. 1969 Oct;204(2):299–310. doi: 10.1113/jphysiol.1969.sp008914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barry R. J., Smyth D. H., Wright E. M. Short-circuit current and solute transfer by rat jejunum. J Physiol. 1965 Nov;181(2):410–431. doi: 10.1113/jphysiol.1965.sp007770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. CEREIJIDO M., CURRAN P. F. INTRACELLULAR ELECTRICAL POTENTIALS IN FROG SKIN. J Gen Physiol. 1965 Mar;48:543–557. doi: 10.1085/jgp.48.4.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chez R. A., Palmer R. R., Schultz S. G., Curran P. F. Effect of inhibitors on alanine transport in isolated rabbit ileum. J Gen Physiol. 1967 Nov;50(10):2357–2375. doi: 10.1085/jgp.50.10.2357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Civan M. M. Effects of active sodium transport on current-voltage relationship of toad bladder. Am J Physiol. 1970 Jul;219(1):234–245. doi: 10.1152/ajplegacy.1970.219.1.234. [DOI] [PubMed] [Google Scholar]
  9. Clarkson T. W. The transport of salt and water across isolated rat ileum. Evidence for at least two distinct pathways. J Gen Physiol. 1967 Jan;50(3):695–727. doi: 10.1085/jgp.50.3.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Curran P. F., Hajjar J. J., Glynn I. M. The sodium-alanine interaction in rabbit ileum. Effect of alanine on sodium fluxes. J Gen Physiol. 1970 Mar;55(3):297–308. doi: 10.1085/jgp.55.3.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Curran P. F., Schultz S. G., Chez R. A., Fuisz R. E. Kinetic relations of the Na-amino acid interaction at the mucosal border of intestine. J Gen Physiol. 1967 May;50(5):1261–1286. doi: 10.1085/jgp.50.5.1261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. DIAMOND J. M. The mechanism of solute transport by the gall-bladder. J Physiol. 1962 May;161:474–502. doi: 10.1113/jphysiol.1962.sp006899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Diamond J. M., Bossert W. H. Standing-gradient osmotic flow. A mechanism for coupling of water and solute transport in epithelia. J Gen Physiol. 1967 Sep;50(8):2061–2083. doi: 10.1085/jgp.50.8.2061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Eddy A. A. A sodium ion concentration gradient formed during the absorption of glycine by mouse ascites-tumour cells. Biochem J. 1969 Nov;115(3):505–509. doi: 10.1042/bj1150505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Edmonds C. J., Marriott J. Electrical potential and short circuit current of an in vitro preparation of rat colon mucosa. J Physiol. 1968 Feb;194(2):479–494. doi: 10.1113/jphysiol.1968.sp008419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Edmonds C. J., Nielsen O. E. Transmembrane electrical potential differences and ionic composition of mucosal cells of rat colon. Acta Physiol Scand. 1968 Mar;72(3):338–349. doi: 10.1111/j.1748-1716.1968.tb03856.x. [DOI] [PubMed] [Google Scholar]
  17. Fordtran J. S., Rector F. C., Jr, Carter N. W. The mechanisms of sodium absorption in the human small intestine. J Clin Invest. 1968 Apr;47(4):884–900. doi: 10.1172/JCI105781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. GIEBISCH G. Electrical potential measurements on single nephrons of Necturus. J Cell Physiol. 1958 Apr;51(2):221–239. doi: 10.1002/jcp.1030510208. [DOI] [PubMed] [Google Scholar]
  19. Giebisch G., Malnic G., Klose R. M., Windhager E. E. Effect of ionic substitutions on distal potential differences in rat kidney. Am J Physiol. 1966 Sep;211(3):560–568. doi: 10.1152/ajplegacy.1966.211.3.560. [DOI] [PubMed] [Google Scholar]
  20. Giebisch G. Some electrical properties of single renal tubule cells. J Gen Physiol. 1968 May;51(5 Suppl):315S+–315S+. [PubMed] [Google Scholar]
  21. Gilles-Baillien M., Schoffeniels E. Metabolic fate of L-alanine actively transported across the tortoise intestine. Life Sci. 1966 Dec;5(24):2253–2255. doi: 10.1016/0024-3205(66)90059-2. [DOI] [PubMed] [Google Scholar]
  22. Gilles-Baillien M., Schoffeniels E. Site of action of L-alanine and D-glucose on the potential difference across the intestine. Arch Int Physiol Biochim. 1965 Mar;73(2):355–357. doi: 10.3109/13813456509084257. [DOI] [PubMed] [Google Scholar]
  23. Goldner A. M., Schultz S. G., Curran P. F. Sodium and sugar fluxes across the mucosal border of rabbit ileum. J Gen Physiol. 1969 Mar;53(3):362–383. doi: 10.1085/jgp.53.3.362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hajjar J. J., Curran P. F. Characteristics of the amino acid transport system in the mucosal border of rabbit ileum. J Gen Physiol. 1970 Dec;56(6):673–691. doi: 10.1085/jgp.56.6.673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hegel U., Frömter E., Wick T. Der elektrische Wandwiderstand des proximalen Konvolutes der Rattenniere. Pflugers Arch Gesamte Physiol Menschen Tiere. 1967;294(4):274–290. [PubMed] [Google Scholar]
  26. Hoshi T., Komatsu Y. Effects of anoxia and metabolic inhibitors on the sugar-evoked potential and demonstration of sugar-outflow potential in toad intestine. Tohoku J Exp Med. 1970 Jan;100(1):47–59. doi: 10.1620/tjem.100.47. [DOI] [PubMed] [Google Scholar]
  27. Hoshi T., Sakai F. A comparison of the electrical resistances of the surface cell membrane and cellular wall in the proximal tubule of the newt kidney. Jpn J Physiol. 1967 Dec 15;17(6):627–637. doi: 10.2170/jjphysiol.17.627. [DOI] [PubMed] [Google Scholar]
  28. KLAHR S., BRICKER N. S. NA TRANSPORT BY ISOLATED TURTLE BLADDER DURING ANAEROBIOSIS AND EXPOSURE TO KCN. Am J Physiol. 1964 Jun;206:1333–1339. doi: 10.1152/ajplegacy.1964.206.6.1333. [DOI] [PubMed] [Google Scholar]
  29. Lew V. L. Short-circuit current and ionic fluxes in the isolated colonic mucosa of Bufo arenarum. J Physiol. 1970 Mar;206(3):509–528. doi: 10.1113/jphysiol.1970.sp009028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Loewenstein W. R. Permeability of membrane junctions. Ann N Y Acad Sci. 1966 Jul 14;137(2):441–472. doi: 10.1111/j.1749-6632.1966.tb50175.x. [DOI] [PubMed] [Google Scholar]
  31. Lyon I., Crane R. K. Studies on transmural potentials in vitro in relation to intestinal absorption. I. Apparent Michaelis constants for Na+dependent sugar transport. Biochim Biophys Acta. 1966 Feb 7;112(2):278–291. doi: 10.1016/0926-6585(66)90327-x. [DOI] [PubMed] [Google Scholar]
  32. Peterson S. C., Goldner A. M., Curran P. F. Glycine transport in rabbit ileum. Am J Physiol. 1970 Oct;219(4):1027–1032. doi: 10.1152/ajplegacy.1970.219.4.1027. [DOI] [PubMed] [Google Scholar]
  33. Quay J. F., Armstrong W. M. Enhancement of net sodium transport in isolated bullfrog intestine by sugars and amino acids. Proc Soc Exp Biol Med. 1969 May;131(1):46–51. doi: 10.3181/00379727-131-33801. [DOI] [PubMed] [Google Scholar]
  34. Quay J. F., Armstrong W. M. Sodium and chloride transport by isolated bullfrog small intestine. Am J Physiol. 1969 Sep;217(3):694–702. doi: 10.1152/ajplegacy.1969.217.3.694. [DOI] [PubMed] [Google Scholar]
  35. SCHULTZ S. G., ZALUSKY R. INTERACTIONS BETWEEN ACTIVE SODIUM TRANSPORT AND ACTIVE AMINO-ACID TRANSPORT IN ISOLATED RABBIT ILEUM. Nature. 1965 Jan 16;205:292–294. doi: 10.1038/205292a0. [DOI] [PubMed] [Google Scholar]
  36. SCHULTZ S. G., ZALUSKY R. ION TRANSPORT IN ISOLATED RABBIT ILEUM. I. SHORT-CIRCUIT CURRENT AND NA FLUXES. J Gen Physiol. 1964 Jan;47:567–584. doi: 10.1085/jgp.47.3.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. SCHULTZ S. G., ZALUSKY R. ION TRANSPORT IN ISOLATED RABBIT ILEUM. II. THE INTERACTION BETWEEN ACTIVE SODIUM AND ACTIVE SUGAR TRANSPORT. J Gen Physiol. 1964 Jul;47:1043–1059. doi: 10.1085/jgp.47.6.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Schultz S. G., Alvarez O. O., Curran P. F., Yu-Tu L. Dicarboxylic amino acid influx across brush border of rabbit ileum. Effects of amino acid charge on the sodium-amino acid interaction. J Gen Physiol. 1970 Nov;56(5):621–639. doi: 10.1085/jgp.56.5.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Schultz S. G., Curran P. F., Chez R. A., Fuisz R. E. Alanine and sodium fluxes across mucosal border of rabbit ileum. J Gen Physiol. 1967 May;50(5):1241–1260. doi: 10.1085/jgp.50.5.1241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Schultz S. G., Curran P. F. Coupled transport of sodium and organic solutes. Physiol Rev. 1970 Oct;50(4):637–718. doi: 10.1152/physrev.1970.50.4.637. [DOI] [PubMed] [Google Scholar]
  41. Schultz S. G., Curran P. F., Wright E. M. Interpretation of hexose-dependent electrical potential differences in small intestine. Nature. 1967 Apr 29;214(5087):509–510. doi: 10.1038/214509a0. [DOI] [PubMed] [Google Scholar]
  42. Schultz S. G., Fuisz R. E., Curran P. F. Amino acid and sugar transport in rabbit ileum. J Gen Physiol. 1966 May;49(5):849–866. doi: 10.1085/jgp.49.5.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Schultz S. G., Strecker C. K. Fructose influx across the brush border of rabbit ileum. Biochim Biophys Acta. 1970 Sep 15;211(3):586–588. doi: 10.1016/0005-2736(70)90266-x. [DOI] [PubMed] [Google Scholar]
  44. Smyth D. H., Wright E. M. Streaming potentials in the rat small intestine. J Physiol. 1966 Feb;182(3):591–602. doi: 10.1113/jphysiol.1966.sp007839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Sullivan W. J. Electrical potential differences across distal renal tubules of Amphiuma. Am J Physiol. 1968 May;214(5):1096–1103. doi: 10.1152/ajplegacy.1968.214.5.1096. [DOI] [PubMed] [Google Scholar]
  46. USSING H. H., WINDHAGER E. E. NATURE OF SHUNT PATH AND ACTIVE SODIUM TRANSPORT PATH THROUGH FROG SKIN EPITHELIUM. Acta Physiol Scand. 1964 Aug;61:484–504. [PubMed] [Google Scholar]
  47. Wright E. M. The origin of the glucose dependent increase in the potential difference across the tortoise small intestine. J Physiol. 1966 Jul;185(2):486–500. doi: 10.1113/jphysiol.1966.sp007998. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES