Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1972 Feb 1;59(2):227–246. doi: 10.1085/jgp.59.2.227

Conduction of the Cardiac Impulse

III. Characteristics of very slow conduction

Paul F Cranefield 1, Andrew L Wit 1, Brian F Hoffman 1
PMCID: PMC2203169  PMID: 5058476

Abstract

The excitability of short segments (5–7 mm) of bundles of canine Purkinje fibers was depressed by exposure to 15–18 mM K+, to 15–18 mM K+ plus 5 x 10-6 epinephrine or norepinephrine, to low K+, and to low Na+. The depressed segment was in the center chamber of a three-chamber bath; the ends of the bundle were exposed to normal Tyrode solution. Each method of depression resulted in slow and probably decremental conduction with an effective conduction velocity in the middle chamber of about 0.05 m/sec, or one-way block, or two-way block with summation of the graded responses in the depressed region. The action potential in the depressed segment (the slow response) differs from the normal action potential in its response to applied stimuli. A second active depolarization can be evoked by cathodal stimulation during much of the slow response. The response in the depressed segment is graded. The response of depressed fibers may depend on excitatory events similar to those responsible for the slow component of the cardiac action potential. It is suggested that the slow response can propagate, at least decrementally, in fibers in which the rapid, Na+-dependent upstroke is absent, and can cause reentrant excitation by so doing.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALTAMIRANO M., COATES C. W., GRUNDFEST H. Mechanisms of direct and neural excitability in electroplaques of electric eel. J Gen Physiol. 1955 Jan 20;38(3):319–360. doi: 10.1085/jgp.38.3.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beeler G. W., Jr, Reuter H. Membrane calcium current in ventricular myocardial fibres. J Physiol. 1970 Mar;207(1):191–209. doi: 10.1113/jphysiol.1970.sp009056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cooley J. W., Dodge F. A., Jr Digital computer solutions for excitation and propagation of the nerve impulse. Biophys J. 1966 Sep;6(5):583–599. doi: 10.1016/S0006-3495(66)86679-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cranefield P. F., Hoffman B. F. Conduction of the cardiac impulse. II. Summation and inhibition. Circ Res. 1971 Feb;28(2):220–233. doi: 10.1161/01.res.28.2.220. [DOI] [PubMed] [Google Scholar]
  5. Cranefield P. F., Hoffman B. F., Wit A. L. Block of conduction in partially depolarized cardiac purkinje fibres induced by an -adrenergic agent. Nat New Biol. 1971 Dec 1;234(48):159–160. doi: 10.1038/newbio234159a0. [DOI] [PubMed] [Google Scholar]
  6. Cranefield P. F., Klein H. O., Hoffman B. F. Conduction of the cardiac impulse. 1. Delay, block, and one-way block in depressed Purkinje fibers. Circ Res. 1971 Feb;28(2):199–219. doi: 10.1161/01.res.28.2.199. [DOI] [PubMed] [Google Scholar]
  7. ENGSTFELD G., ANTONI H., FLECKENSTEIN A. [The restoration of stimulus transmission and contraction power of K ion paralysed frog and mammalian myocardium by adrenaline. Analysis of an effect of adrenaline not observed until now]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1961;273:145–163. [PubMed] [Google Scholar]
  8. GRUNDFEST H., KAO C. Y., ALTAMIRANO M. Bioelectric effects of ions microinjected into the giant axon of Loligo. J Gen Physiol. 1954 Nov 20;38(2):245–282. doi: 10.1085/jgp.38.2.245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Griffiths J., Leung F. The sequential estimation of plasma catecholamines and whole blood histamine in myocardial infarction. Am Heart J. 1971 Aug;82(2):171–179. doi: 10.1016/0002-8703(71)90262-6. [DOI] [PubMed] [Google Scholar]
  10. Mascher D. Electrical and mechanical events in depolarized cardiac muscle fibers during low sodium perfusion. Pflugers Arch. 1971;323(4):284–296. doi: 10.1007/BF00592399. [DOI] [PubMed] [Google Scholar]
  11. Mascher D. Electrical and mechanical responses from ventricular muscle fibers after inactivation of the sodium carrying system. Pflugers Arch. 1970;317(4):359–372. doi: 10.1007/BF00586584. [DOI] [PubMed] [Google Scholar]
  12. Matsubara I., Matsuda K. Contribution of calcium current to the ventricular action potential of dog. Jpn J Physiol. 1969 Dec;19(6):814–823. doi: 10.2170/jjphysiol.19.814. [DOI] [PubMed] [Google Scholar]
  13. Noble D., Hall A. E. The Conditions for Initiating "All-or-Nothing" Repolarization in Cardiac Muscle. Biophys J. 1963 Jul;3(4):261–274. doi: 10.1016/s0006-3495(63)86820-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pappano A. J. Calcium-dependent action potentials produced by catecholamines in guinea pig atrial muscle fibers depolarized by potassium. Circ Res. 1970 Sep;27(3):379–390. doi: 10.1161/01.res.27.3.379. [DOI] [PubMed] [Google Scholar]
  15. RUSSELL R. A., CRAFOORD J., HARRIS A. S. Changes in myocardial composition after coronary artery ligation. Am J Physiol. 1961 May;200:995–998. doi: 10.1152/ajplegacy.1961.200.5.995. [DOI] [PubMed] [Google Scholar]
  16. Ross S. M., Hoffman B. F. Constant current stimulation through a microelectrode. Med Biol Eng. 1970 Mar;8(2):207–208. doi: 10.1007/BF02509332. [DOI] [PubMed] [Google Scholar]
  17. Rougier O., Vassort G., Garnier D., Gargouil Y. M., Coraboeuf E. Existence and role of a slow inward current during the frog atrial action potential. Pflugers Arch. 1969;308(2):91–110. doi: 10.1007/BF00587018. [DOI] [PubMed] [Google Scholar]
  18. Vassort G., Rougier O., Garnier D., Sauviat M. P., Coraboeuf E., Gargouïl Y. M. Effects of adrenaline on membrane inward currents during the cardiac action potential. Pflugers Arch. 1969;309(1):70–81. doi: 10.1007/BF00592283. [DOI] [PubMed] [Google Scholar]
  19. Vereecke J., Carmeliet E. Sr action potentials in cardiac Purkyne fibres. I. Evidence for a regenerative increase in Sr conductance. Pflugers Arch. 1971;322(1):60–72. doi: 10.1007/BF00586665. [DOI] [PubMed] [Google Scholar]
  20. Vereecke J., Carmeliet E. Sr action potentials in cardiac Purkyne fibres. II. Dependence of the Sr conductance on the external Sr concentration and Sr-Ca antagonism. Pflugers Arch. 1971;322(1):73–82. doi: 10.1007/BF00586666. [DOI] [PubMed] [Google Scholar]
  21. Wit A. L., Cranefield P. F., Hoffman B. F. Slow conduction and reentry in the ventricular conducting system. II. Single and sustained circus movement in networks of canine and bovine Purkinje fibers. Circ Res. 1972 Jan;30(1):11–22. doi: 10.1161/01.res.30.1.11. [DOI] [PubMed] [Google Scholar]
  22. Wit A. L., Hoffman B. F., Cranefield P. F. Slow conduction and reentry in the ventricular conducting system. I. Return extrasystole in canine Purkinje fibers. Circ Res. 1972 Jan;30(1):1–10. doi: 10.1161/01.res.30.1.1. [DOI] [PubMed] [Google Scholar]
  23. de Carvalho A. P., Hoffman B. F., de Carvalho M. P. Two components of the cardiac action potential. I. Voltage-time course and the effect of acetylcholine on atrial and nodal cells of the rabbit heart. J Gen Physiol. 1969 Nov;54(5):607–635. doi: 10.1085/jgp.54.5.607. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES