Abstract
In the UV-sensitive photoreceptors of the median ocellus (UV cells), prolonged depolarizing afterpotentials are seen following a bright UV stimulus. These afterpotentials are abolished by long-wavelength light. During a bright UV stimulus, long-wavelength light elicits a sustained negative-going response. These responses to long-wavelength light are called repolarizing responses. The spectral sensitivity curve for the repolarizing responses peaks at 480 nm; it is the only spectral sensitivity curve for a median ocellus electrical response known to peak at 480 nm. The reversal potentials of the repolarizing response and the depolarizing receptor potential are the same, and change in the same way when the external sodium ion concentration is reduced. We propose that the generation of repolarizing responses involves a thermally stable intermediate of the UV-sensitive photopigment of UV cells.
Full Text
The Full Text of this article is available as a PDF (810.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BROWN P. K., BROWN P. S. Visual pigments of the octopus and cuttlefish. Nature. 1958 Nov 8;182(4645):1288–1290. doi: 10.1038/1821288a0. [DOI] [PubMed] [Google Scholar]
- Blankenship J. E., Wachtel H., Kandel E. R. Ionic mechanisms of excitatory, inhibitory, and dual synaptic actions mediated by an identified interneuron in abdominal ganglion of Aplysia. J Neurophysiol. 1971 Jan;34(1):76–92. doi: 10.1152/jn.1971.34.1.76. [DOI] [PubMed] [Google Scholar]
- HUBBARD R., ST GEORGE R. C. The rhodopsin system of the squid. J Gen Physiol. 1958 Jan 20;41(3):501–528. doi: 10.1085/jgp.41.3.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hadjilazaro B., Baumann F. Afterpotentials of the visual cell of the honey-bee drone. Helv Physiol Pharmacol Acta. 1968;26(3):CR351–CR352. [PubMed] [Google Scholar]
- Hubbard R., Bownds D., Yoshizawa T. The chemistry of visual photoreception. Cold Spring Harb Symp Quant Biol. 1965;30:301–315. doi: 10.1101/sqb.1965.030.01.032. [DOI] [PubMed] [Google Scholar]
- McReynolds J. S., Gorman A. L. Membrane conductances and spectral sensitivities of Pecten photoreceptors. J Gen Physiol. 1970 Sep;56(3):392–406. doi: 10.1085/jgp.56.3.392. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McReynolds J. S., Gorman A. L. Photoreceptor potentials of opposite polarity in the eye of the scallop, Pecten irradians. J Gen Physiol. 1970 Sep;56(3):376–391. doi: 10.1085/jgp.56.3.376. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NAKA K. I. Recording of retinal action potentials from single cells in the insect compound eye. J Gen Physiol. 1961 Jan;44:571–584. doi: 10.1085/jgp.44.3.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nolte J., Brown J. E. Electrophysiological properties of cells in the median ocellus of Limulus. J Gen Physiol. 1972 Feb;59(2):167–185. doi: 10.1085/jgp.59.2.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nolte J., Brown J. E., Smith T. G., Jr A hyperpolarizing component of the receptor potential in the median ocellus of Limulus. Science. 1968 Nov 8;162(3854):677–679. doi: 10.1126/science.162.3854.677. [DOI] [PubMed] [Google Scholar]
- Nolte J., Brown J. E. The spectral sensitivities of single cells in the median ocellus of Limulus. J Gen Physiol. 1969 Nov;54(5):636–649. doi: 10.1085/jgp.54.5.636. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tomita T. Electrical activity of vertebrate photoreceptors. Q Rev Biophys. 1970 May;3(2):179–222. doi: 10.1017/s0033583500004571. [DOI] [PubMed] [Google Scholar]
- WALD G., HUBBARD R. Visual pigment of a decapod crustacean: the lobster. Nature. 1957 Aug 10;180(4580):278–280. doi: 10.1038/180278a0. [DOI] [PubMed] [Google Scholar]
- Waterman T. H. Action Potentials from an Arthropod Ocellus: The Median Eye of Limulus. Proc Natl Acad Sci U S A. 1953 Jul;39(7):687–694. doi: 10.1073/pnas.39.7.687. [DOI] [PMC free article] [PubMed] [Google Scholar]