Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1972 Apr 1;59(4):437–461. doi: 10.1085/jgp.59.4.437

The Interaction between Caffeine and Calcium in the Desensitization of Muscle Postjunctional Membrane Receptors

David E Cochrane 1, Rodney L Parsons 1
PMCID: PMC2203190  PMID: 4537383

Abstract

The interaction between caffeine and calcium on the rate of desensitization of muscle postjunctional membrane (PJM) receptors during the sustained application of 0.27 mM carbamylcholine (CARB) has been studied in vitro on the sartorius muscle of the frog. The rate of PJM repolarization with CARB added to the solution bathing the muscle or the recovery of the effective transmembrane resistance (EMR) during the microperfusion of CARB directly onto the end-plate region of individual fibers was used as an index of the rate of desensitization. Caffeine (1.5 mM) increased the rate of PJM repolarization with bulk application of CARB in a 1.8 or 10 mM calcium Ringer solution but had no effect on PJM repolarization in a calcium-deficient, 4 mM magnesium Ringer solution. For EMR measurements the preparation was rendered mechanically quiescent by repeated challenges with isotonic KCl during an exposure of several hours to a calcium-free, 4 mM magnesium-1 mM EGTA Ringer solution. In these fibers, the microperfusion of 0.27 mM CARB together with 1.8 mM calcium plus 1.5 mM caffeine significantly increased the rate of EMR recovery above that observed in the absence of caffeine. Raising the calcium concentration to 10 mM had a similar effect; however, no additional increase was noted by the inclusion of 1.5 mM caffeine. It is suggested that the major role of caffeine in PJM desensitization is to increase the calcium permeability of the surface membrane. The transmembrane movement of calcium and the consequent intracellular accumulation of calcium is seen as a critical factor in controlling the rate of PJM desensitization.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BIANCHI C. P. Kinetics of radiocaffeine uptake and release in frog sartorius. J Pharmacol Exp Ther. 1962 Oct;138:41–47. [PubMed] [Google Scholar]
  2. Caputo C. Caffeine- and potassium-induced contractures of frog striated muscle fibers in hypertonic solutions. J Gen Physiol. 1966 Sep;50(1):129–139. doi: 10.1085/jgp.50.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chiarandini D. J., Reuben J. P., Brandt P. W., Grundfest H. Effects of caffeine on crayfish muscle fibers. I. Activation of contraction and induction of Ca spike electrogenesis. J Gen Physiol. 1970 May;55(5):640–664. doi: 10.1085/jgp.55.5.640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chiarandini D. J., Reuben J. P., Girardier L., Katz G. M., Grundfest H. Effects of caffeine on crayfish muscle fibers. II. Refractoriness and factors influencing recovery (repriming) of contractile responses. J Gen Physiol. 1970 May;55(5):665–687. doi: 10.1085/jgp.55.5.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Elmqvist D., Feldman D. S. Spontaneous activity at a mammalian neuromuscular junction in tetrodotoxin. Acta Physiol Scand. 1965 Aug;64(4):475–476. doi: 10.1111/j.1748-1716.1965.tb04206.x. [DOI] [PubMed] [Google Scholar]
  6. FATT P., KATZ B. Spontaneous subthreshold activity at motor nerve endings. J Physiol. 1952 May;117(1):109–128. [PMC free article] [PubMed] [Google Scholar]
  7. Isaacson A. Caffeine-induced contractures and related calcium movements of muscle in hypertonic media. Experientia. 1969 Dec 15;25(12):1263–1265. doi: 10.1007/BF01897487. [DOI] [PubMed] [Google Scholar]
  8. Isaacson A., Sandow A. Quinine and caffeine effects on 45Ca movements in frog sartorius muscle. J Gen Physiol. 1967 Sep;50(8):2109–2128. doi: 10.1085/jgp.50.8.2109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. JENKINSON D. H., NICHOLLS J. G. Contractures and permeability changes produced by acetylcholine in depolarized denervated muscle. J Physiol. 1961 Nov;159:111–127. doi: 10.1113/jphysiol.1961.sp006796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. JENKINSON D. H. The antagonism between tubocurarine and substances which depolarize the motor end-plate. J Physiol. 1960 Jul;152:309–324. doi: 10.1113/jphysiol.1960.sp006489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kao C. Y. Tetrodotoxin, saxitoxin and their significance in the study of excitation phenomena. Pharmacol Rev. 1966 Jun;18(2):997–1049. [PubMed] [Google Scholar]
  12. Katz B., Miledi R. Spontaneous and evoked activity of motor nerve endings in calcium Ringer. J Physiol. 1969 Aug;203(3):689–706. doi: 10.1113/jphysiol.1969.sp008887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Katz B., Miledi R. The timing of calcium action during neuromuscular transmission. J Physiol. 1967 Apr;189(3):535–544. doi: 10.1113/jphysiol.1967.sp008183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lambert D. H., Parsons R. L. Influence of polyvalent cations on the activation of muscle end plate receptors. J Gen Physiol. 1970 Sep;56(3):309–321. doi: 10.1085/jgp.56.3.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. MAMBRINI J., BENOIT P. R. ACTION DE LA CAF'EINE SUR LES JONCTIONS NEURO-MUSCULAIRES DE LA GRENOUILLE. C R Seances Soc Biol Fil. 1963 Dec 15;157:1373–1377. [PubMed] [Google Scholar]
  16. Magazanik L. G., Vyskocil F. Dependence of acetylcholine desensitization on the membrane potential of frog muscle fibre and on the ionic changes in the medium. J Physiol. 1970 Oct;210(3):507–518. doi: 10.1113/jphysiol.1970.sp009223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Manthey A. A. Further studies of the effect of calcium on the time course of action of carbamylcholine at the neuromuscular junction. J Gen Physiol. 1970 Sep;56(3):407–419. doi: 10.1085/jgp.56.3.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Manthey A. A. The effect of calcium on the desensitization of membrane receptors at the neuromuscular junction. J Gen Physiol. 1966 May;49(5):963–976. doi: 10.1085/jgp.49.5.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nastuk W. L., Parsons R. L. Factors in the inactivation of postjunctional membrane receptors of frog skeletal muscle. J Gen Physiol. 1970 Aug;56(2):218–249. doi: 10.1085/jgp.56.2.218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Parsons R. L. Changes in postjunctional receptors with decamethonium and carbamylcholine. Am J Physiol. 1969 Sep;217(3):805–811. doi: 10.1152/ajplegacy.1969.217.3.805. [DOI] [PubMed] [Google Scholar]
  21. Parsons R. L., Johnson E. W., Lambert D. H. Effects of lanthanum and calcium on chronically denervated muscle fibers. Am J Physiol. 1971 Feb;220(2):401–405. doi: 10.1152/ajplegacy.1971.220.2.401. [DOI] [PubMed] [Google Scholar]
  22. Parsons R. L. Mechanism of neuromuscular blockade by tetraethylammonium. Am J Physiol. 1969 Apr;216(4):925–931. doi: 10.1152/ajplegacy.1969.216.4.925. [DOI] [PubMed] [Google Scholar]
  23. Parsons R. L., Nastuk W. L. Activation of contractile system in depolarized skeletal muscle fibers. Am J Physiol. 1969 Aug;217(2):364–369. doi: 10.1152/ajplegacy.1969.217.2.364. [DOI] [PubMed] [Google Scholar]
  24. SHANES A. M. Electrochemical aspects of physiological and pharmacological action in excitable cells. I. The resting cell and its alteration by extrinsic factors. Pharmacol Rev. 1958 Mar;10(1):59–164. [PubMed] [Google Scholar]
  25. Sandow A. Excitation-contraction coupling in skeletal muscle. Pharmacol Rev. 1965 Sep;17(3):265–320. [PubMed] [Google Scholar]
  26. THESLEFT S. The mode of neuromuscular block caused by acetylcholine, nicotine, decamethonium and succinylcholine. Acta Physiol Scand. 1955 Oct 27;34(2-3):218–231. doi: 10.1111/j.1748-1716.1955.tb01242.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES