Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1972 May 1;59(5):559–585. doi: 10.1085/jgp.59.5.559

Mechanical Properties of the Sarcolemma and Myoplasm in Frog Muscle as a Function of Sarcomere Length

Stanley I Rapoport 1
PMCID: PMC2203191  PMID: 4537306

Abstract

The elastimeter method was applied to the single muscle fiber of the frog semitendinosus to obtain the elastic moduli of the sarcolemma and myoplasm, as well as their relative contributions to resting fiber tension at different extensions. A bleb which was sucked into a flat-mouthed pipette at the fiber surface separated into an external sarcolemmal membrane and a thick inner myoplasmic region. Measurements showed that the sarcolemma does not contribute to intact fiber tension at sarcomere lengths below 3 µ. It was estimated that the sarcolemma contributed on the order of 10% to intact fiber tension at sarcomere lengths between 3 and 3.75 µ, and more so with further extension. Between these sarcomere lengths, the sarcolemma can be linearly extended and has a longitudinal elastic modulus of 5 x 106 dyne/cm2 (assuming a thickness of 0.1 µ). Resistance to deformation of the inner bleb region is due to myoplasmic elasticity. The myoplasmic elastic modulus was estimated by use of a model and was used to predict a fiber length-tension curve which agreed approximately with observations.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BIRKS R., KATZ B., MILEDI R. Dissociation of the 'surface membrane complex' in atrophic muscle fibres. Nature. 1959 Nov 7;184(Suppl 19):1507–1508. doi: 10.1038/1841507a0. [DOI] [PubMed] [Google Scholar]
  2. CARTON R. W., DAINAUSKAS J., CLARK J. W. Elastic properties of single elastic fibers. J Appl Physiol. 1962 May;17:547–551. doi: 10.1152/jappl.1962.17.3.547. [DOI] [PubMed] [Google Scholar]
  3. CASELLA C. Tensile force in total striated muscle, isolated fibre and sarcolemma. Acta Physiol Scand. 1950 Dec;21(4):380–401. doi: 10.1111/j.1748-1716.1950.tb00744.x. [DOI] [PubMed] [Google Scholar]
  4. Elliott G. F. Variations of the contractile apparatus in smooth and striated muscles. X-ray diffraction studies at rest and in contraction. J Gen Physiol. 1967 Jul;50(6 Suppl):171–184. doi: 10.1085/jgp.50.6.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. FATT P. AN ANALYSIS OF THE TRANSVERSE ELECTRICAL IMPEDANCE OF STRIATED MUSCLE. Proc R Soc Lond B Biol Sci. 1964 Mar 17;159:606–651. doi: 10.1098/rspb.1964.0023. [DOI] [PubMed] [Google Scholar]
  6. FRANZINI-ARMSTRONG C. FINE STRUCTURE OF SARCOPLASMIC RETICULUM AND TRANVERSE TUBULAR SYSTEM IN MUSCLE FIBERS. Fed Proc. 1964 Sep-Oct;23:887–895. [PubMed] [Google Scholar]
  7. Fields R. W. Mechanical properties of the frog sarcolemma. Biophys J. 1970 May;10(5):462–479. doi: 10.1016/S0006-3495(70)86312-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gordon A. M., Huxley A. F., Julian F. J. Tension development in highly stretched vertebrate muscle fibres. J Physiol. 1966 May;184(1):143–169. doi: 10.1113/jphysiol.1966.sp007908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HUXLEY A. F. MUSCLE. Annu Rev Physiol. 1964;26:131–152. doi: 10.1146/annurev.ph.26.030164.001023. [DOI] [PubMed] [Google Scholar]
  10. HUXLEY H. E. X-ray analysis and the problem of muscle. Proc R Soc Lond B Biol Sci. 1953 Mar 11;141(902):59–62. doi: 10.1098/rspb.1953.0017. [DOI] [PubMed] [Google Scholar]
  11. Hill D. K. Tension due to interaction between the sliding filaments in resting striated muscle. The effect of stimulation. J Physiol. 1968 Dec;199(3):637–684. doi: 10.1113/jphysiol.1968.sp008672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hiramoto Y. Rheological properties of sea urchin eggs. Biorheology. 1970 Jan;6(3):201–234. doi: 10.3233/bir-1970-6306. [DOI] [PubMed] [Google Scholar]
  13. KOKETSU K., KITAMURA R., TANAKA R. BINDING OF CALCIUM IONS TO CELL MEMBRANE ISOLATED FROM BULLFROG SKELETAL MUSCLE. Am J Physiol. 1964 Aug;207:509–512. doi: 10.1152/ajplegacy.1964.207.2.509. [DOI] [PubMed] [Google Scholar]
  14. MAURO A., ADAMS W. R. The structure of the sarcolemma of the frog skeletal muscle fiber. J Biophys Biochem Cytol. 1961 Aug;10(4):177–185. doi: 10.1083/jcb.10.4.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. PODOLSKY R. J. THE MAXIMUM SARCOMERE LENGTH FOR CONTRACTION OF ISOLATED MYOFIBRILS. J Physiol. 1964 Jan;170:110–123. doi: 10.1113/jphysiol.1964.sp007317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. RAND R. P., BURTON A. C. MECHANICAL PROPERTIES OF THE RED CELL MEMBRANE. I. MEMBRANE STIFFNESS AND INTRACELLULAR PRESSURE. Biophys J. 1964 Mar;4:115–135. doi: 10.1016/s0006-3495(64)86773-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Reed R., Wouston T. W., Todd P. M. Structure and function of the sarcolemma of skeletal muscle. Nature. 1966 Jul 30;211(5048):534–536. doi: 10.1038/211534b0. [DOI] [PubMed] [Google Scholar]
  18. Street S. F., Ramsey R. W. Sarcolemma: transmitter of active tension in frog skeletal muscle. Science. 1965 Sep 17;149(3690):1379–1380. doi: 10.1126/science.149.3690.1379. [DOI] [PubMed] [Google Scholar]
  19. WANG H. The sarcolemma and fibrous envelope of striated muscles in beef. Exp Cell Res. 1956 Aug;11(2):452–463. doi: 10.1016/0014-4827(56)90121-5. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES