Abstract
Spectral and polarization sensitivity measurements were made at several levels (retina, first and third optic ganglion, cervical connective, behavior) of the dipteran visual nervous system. At all levels, it was possible to reveal contributions from the retinular cell subsystem cells 1 to 6 or the retinular cell subsystem cells 7 and 8 or both. Only retinular cells 1 to 6 were directly studied, and all possessed the same spectral sensitivity characterized by two approximately equal sensitivity peaks at 350 and 480 nm. All units of both the sustaining and on-off variety in the first optic ganglion exhibited the same spectral sensitivity as that of retinular cells 1 to 6. It was possible to demonstrate for motion detection and optomotor responses two different spectral sensitivities depending upon the spatial wavelength of the stimulus. For long spatial wavelengths, the spectral sensitivity agreed with retinular cells 1 to 6; however, the spectral sensitivity at short spatial wavelengths was characterized by a single peak at 465 nm reflecting contributions from the (7, 8) subsystem. Although the two subsystems exhibited different spectral sensitivities, the difference was small and no indication of color discrimination mechanisms was observed. Although all retinular cells 1 to 6 exhibited a preferred polarization plane, sustaining and on-off units did not. Likewise, motion detection and optomotor responses were insensitive to the polarization plane for long spatial wavelength stimuli; however, sensitivity to select polarization planes was observed for short spatial wavelengths.
Full Text
The Full Text of this article is available as a PDF (1.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arnett D. W. Receptive field organization of units in the first optic ganglion of diptera. Science. 1971 Sep 3;173(4000):929–931. doi: 10.1126/science.173.4000.929. [DOI] [PubMed] [Google Scholar]
- Bishop L. G., Keehn D. G., McCann G. D. Motion detection by interneurons of optic lobes and brain of the flies Calliphora phaenicia and Musca domestica. J Neurophysiol. 1968 Jul;31(4):509–525. doi: 10.1152/jn.1968.31.4.509. [DOI] [PubMed] [Google Scholar]
- Braitenberg V. Patterns of projection in the visual system of the fly. I. Retina-lamina projections. Exp Brain Res. 1967;3(3):271–298. doi: 10.1007/BF00235589. [DOI] [PubMed] [Google Scholar]
- Daw N. W. Colour-coded ganglion cells in the goldfish retina: extension of their receptive fields by means of new stimuli. J Physiol. 1968 Aug;197(3):567–592. doi: 10.1113/jphysiol.1968.sp008575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eckert H. Die spektrale Empfindlichkeit des Komplexauges von Musca (Bestimmung aus Messungen der optomotorischen Reaktion. Kybernetik. 1971 Oct;9(4):145–156. doi: 10.1007/BF00290480. [DOI] [PubMed] [Google Scholar]
- Kirschfeld K. Die Projektion der optischen Umwelt auf das Raster der Rhabdomere im Komplexauge von MUSCA. Exp Brain Res. 1967;3(3):248–270. doi: 10.1007/BF00235588. [DOI] [PubMed] [Google Scholar]
- Kirschfeld K., Franceschini N. Optische Eigenschaften der Ommatidien im Komplexauge von Musca. Kybernetik. 1968 Aug;5(2):47–52. doi: 10.1007/BF00272694. [DOI] [PubMed] [Google Scholar]
- Kirschfeld K., Reichardt W. Optomotorische Versuche an Musca mit linear polarisiertem Licht. Z Naturforsch B. 1970 Feb;25(2):228–228. [PubMed] [Google Scholar]
- Langer H., Thorell B. Microspectrophotometry of single rhabdomeres in the insect eye. Exp Cell Res. 1966 Mar;41(3):673–677. doi: 10.1016/s0014-4827(66)80119-2. [DOI] [PubMed] [Google Scholar]
- McCann G. D., Dill J. C. Fundamental properties of intensity, form, and motion perception in the visual nervous systems of Calliphora phaenicia and Musca domestica. J Gen Physiol. 1969 Apr;53(4):385–413. doi: 10.1085/jgp.53.4.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCann G. D., Foster S. F. Binocular interactions of motion detection fibers in the optic lobes of flies. Kybernetik. 1971 May;8(5):193–203. doi: 10.1007/BF00291121. [DOI] [PubMed] [Google Scholar]
- McCann G. D., MacGinitie G. F. Optomotor response studies of insect vision. Proc R Soc Lond B Biol Sci. 1965 Nov 23;163(992):369–401. doi: 10.1098/rspb.1965.0074. [DOI] [PubMed] [Google Scholar]
- Melamed J., Trujillo-Cenóz O. The fine structure of the central cells in the ommatidia of dipterans. J Ultrastruct Res. 1967 Dec 12;21(3):313–334. doi: 10.1016/s0022-5320(67)80098-4. [DOI] [PubMed] [Google Scholar]
- Mote M. I., Goldsmith T. H. Spectral sensitivities of color receptors in the compound eye of the cockroach Periplaneta. J Exp Zool. 1970 Feb;173(2):137–145. doi: 10.1002/jez.1401730203. [DOI] [PubMed] [Google Scholar]
- Naka K. I., Nye P. W. Receptive-field organization of the catfish retina: are at least two lateral mechanisms involved? J Neurophysiol. 1970 Sep;33(5):625–642. doi: 10.1152/jn.1970.33.5.625. [DOI] [PubMed] [Google Scholar]
- Naka K. I., Rushton W. A. An attempt to analyse colour reception by electrophysiology. J Physiol. 1966 Aug;185(3):556–586. doi: 10.1113/jphysiol.1966.sp008002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shaw S. R. Interreceptor coupling in ommatidia of drone honeybee and locust compound eyes. Vision Res. 1969 Sep;9(9):999–1029. doi: 10.1016/0042-6989(69)90044-3. [DOI] [PubMed] [Google Scholar]
- Tomita T., Kaneko A., Murakami M., Pautler E. L. Spectral response curves of single cones in the carp. Vision Res. 1967 Jul;7(7):519–531. doi: 10.1016/0042-6989(67)90061-2. [DOI] [PubMed] [Google Scholar]
- Trujillo-Cenóz O., Melamed J. Compound eye of dipterans: anatomical basis for integration--an electron microscope study. J Ultrastruct Res. 1966 Oct;16(3):395–398. doi: 10.1016/s0022-5320(66)80071-0. [DOI] [PubMed] [Google Scholar]