Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1972 May 1;59(5):503–518. doi: 10.1085/jgp.59.5.503

Response of the Frog Skin to Steady-State Voltage Clamping

I. The shunt pathway

Lazaro J Mandel 1, Peter F Curran 1
PMCID: PMC2203195  PMID: 4537305

Abstract

Properties of the shunt pathway (a pathway in parallel to the Na transport system) in frog skin have been examined. The permeability of this shunt to urea increases markedly when the skin is depolarized to -100 mv (inside negative) but hyperpolarization to +100 mv produces no change in urea permeability compared to short-circuit conditions. The permeability increase at depolarizing potentials is dependent on the external solute concentration and is considerably reduced by the presence of external Ca. Neither urea permeability nor its response to changes in potential difference are affected by complete inhibition of Na transport by ouabain. In ouabain-poisoned skins, movements of Na, K, Cl, and mannitol through the shunt change in parallel with urea movements. Ion fluxes under these conditions and their response to potential can be described by the constant field equation. The selectivity of the shunt is in the order Cl > urea > K > Na > mannitol and this order does not appear to be affected by the absolute magnitude of the shunt permeability. Arguments are presented suggesting that the pathway is mainly between cells and that its permeability may be affected by cell swelling.

Full Text

The Full Text of this article is available as a PDF (802.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boulpaep E. L., Seely J. F. Electrophysiology of proximal and distal tubules in the autoperfused dog kidney. Am J Physiol. 1971 Oct;221(4):1084–1096. doi: 10.1152/ajplegacy.1971.221.4.1084. [DOI] [PubMed] [Google Scholar]
  2. CEREIJIDO M., CURRAN P. F. INTRACELLULAR ELECTRICAL POTENTIALS IN FROG SKIN. J Gen Physiol. 1965 Mar;48:543–557. doi: 10.1085/jgp.48.4.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DURBIN R. P. Osmotic flow of water across permeable cellulose membranes. J Gen Physiol. 1960 Nov;44:315–326. doi: 10.1085/jgp.44.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. FARQUHAR M. G., PALADE G. E. FUNCTIONAL ORGANIZATION OF AMPHIBIAN SKIN. Proc Natl Acad Sci U S A. 1964 Apr;51:569–577. doi: 10.1073/pnas.51.4.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Frizzell R. A., Schultz S. G. Ionic conductances of extracellular shunt pathway in rabbit ileum. Influence of shunt on transmural sodium transport and electrical potential differences. J Gen Physiol. 1972 Mar;59(3):318–346. doi: 10.1085/jgp.59.3.318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hays R. M. A new proposal for the action of vasopressin, based on studies of a complex synthetic membrane. J Gen Physiol. 1968 Mar;51(3):385–398. doi: 10.1085/jgp.51.3.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kedem O., Essig A. Isotope flows and flux ratios in biological membranes. J Gen Physiol. 1965 Jul;48(6):1047–1070. doi: 10.1085/jgp.48.6.1047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. MACROBBIE E. A., USSING H. H. Osmotic behaviour of the epithelial cells of frog skin. Acta Physiol Scand. 1961 Nov-Dec;53:348–365. doi: 10.1111/j.1748-1716.1961.tb02293.x. [DOI] [PubMed] [Google Scholar]
  9. SCHULTZ S. G., ZALUSKY R. ION TRANSPORT IN ISOLATED RABBIT ILEUM. I. SHORT-CIRCUIT CURRENT AND NA FLUXES. J Gen Physiol. 1964 Jan;47:567–584. doi: 10.1085/jgp.47.3.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. SHANES A. M. Electrochemical aspects of physiological and pharmacological action in excitable cells. I. The resting cell and its alteration by extrinsic factors. Pharmacol Rev. 1958 Mar;10(1):59–164. [PubMed] [Google Scholar]
  11. USSING H. H. RELATIONSHIP BETWEEN OSMOTIC REACTIONS AND ACTIVE SODIUM TRANSPORT IN THE FROG SKIN EPITHELIUM. Acta Physiol Scand. 1965 Jan-Feb;63:141–155. doi: 10.1111/j.1748-1716.1965.tb04052.x. [DOI] [PubMed] [Google Scholar]
  12. USSING H. H., WINDHAGER E. E. NATURE OF SHUNT PATH AND ACTIVE SODIUM TRANSPORT PATH THROUGH FROG SKIN EPITHELIUM. Acta Physiol Scand. 1964 Aug;61:484–504. [PubMed] [Google Scholar]
  13. Voûte C. L., Ussing H. H. Some morphological aspects of active sodium transport. The epithelium of the frog skin. J Cell Biol. 1968 Mar;36(3):625–638. doi: 10.1083/jcb.36.3.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. WHITTEMBURY G. ELECTRICAL POTENTIAL PROFILE OF THE TOAD SKIN EPITHELIUM. J Gen Physiol. 1964 Mar;47:795–808. doi: 10.1085/jgp.47.4.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Walser M. Role of edge damage in sodium permeability of toad bladder and a means of avoiding it. Am J Physiol. 1970 Jul;219(1):252–255. doi: 10.1152/ajplegacy.1970.219.1.252. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES