Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1973 Mar 1;61(3):342–360. doi: 10.1085/jgp.61.3.342

Quantal Mechanism of Transmitter Release during Progressive Depletion of the Presynaptic Stores at a Ganglionic Synapse

The action of hemicholinium-3 and thiamine deprivation

Oscar Sacchi 1, Virgilio Perri 1
PMCID: PMC2203453  PMID: 4689622

Abstract

In the present experiments we interfered with the mechanism of acetylcholine (ACh) synthesis in the rat superior cervical ganglion by impairing the supply of either the choline group (hemicholinium no. 3 [HC-3]treatment) or the acetyl group (thiamine deprivation). Under both conditions stimulation causes in the ganglion a progressive decline in ACh output associated with a depletion of transmitter tissue content. ACh release from the terminals of a single preganglionic fiber was estimated from the quantum content value of the evoked excitatory postsynaptic potentials (EPSP's) recorded intracellularly in the ganglion neuron under test. The present observations indicate that Poisson statistics describe transmitter release at either low or high release levels. Furthermore, the progressive decline in the rate of ACh output occurring during repetitive stimulation is shown to correspond to a progressive decrease in the number of transmitter quanta released per impulse and not to any modification in the size of individual quanta. Some 8,000 transmitter quanta proved to represent the presynaptic transmitter store initially present in those terminals on a neuron that are activated by stimulation of a single preganglionic fiber. Speculations are considered about synaptic efficacy and nerve connections in rat autonomic ganglia. It is suggested that six preganglionic fibers represent the mean input to a ganglion neuron.

Full Text

The Full Text of this article is available as a PDF (1,015.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BROOKS V. B., THIES R. E. Reduction of quantum content during neuromuscular transmission. J Physiol. 1962 Jul;162:298–310. doi: 10.1113/jphysiol.1962.sp006934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bennett M. R., McLachlan E. M. An electrophysiological analysis of the storage of acetylcholine in preganglionic nerve terminals. J Physiol. 1972 Mar;221(3):657–668. doi: 10.1113/jphysiol.1972.sp009774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blackman J. G., Purves R. D. Intracellular recordings from ganglia of the thoracic sympathetic chain of the guinea-pig. J Physiol. 1969 Jul;203(1):173–198. doi: 10.1113/jphysiol.1969.sp008858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Browning E. T., Schulman M. P. (14C) acetylcholine synthesis by cortex slices of rat brain. J Neurochem. 1968 Dec;15(12):1391–1405. doi: 10.1111/j.1471-4159.1968.tb05921.x. [DOI] [PubMed] [Google Scholar]
  5. Cheney D. L., Gubler C. J., Jaussi A. W. Production of acetylcholine in rat brain following thiamine deprivation and treatment with thiamine antagonists. J Neurochem. 1969 Sep;16(9):1283–1291. doi: 10.1111/j.1471-4159.1969.tb05978.x. [DOI] [PubMed] [Google Scholar]
  6. Colomo F., Rahamimoff R. Interaction between sodium and calcium ions in the process of transmitter release at the neuromuscular junction. J Physiol. 1968 Sep;198(1):203–218. doi: 10.1113/jphysiol.1968.sp008602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. ELMQVIST D., QUASTEL D. M. PRESYNAPTIC ACTION OF HEMICHOLINIUM AT THE NEUROMUSCULAR JUNCTION. J Physiol. 1965 Apr;177:463–482. doi: 10.1113/jphysiol.1965.sp007605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gage P. W., Hubbard J. I. Evidence for a Poisson distribution of miniature end-plate potentials and some implications. Nature. 1965 Oct 23;208(5008):395–396. doi: 10.1038/208395a0. [DOI] [PubMed] [Google Scholar]
  9. Hubbard J. I. Mechanism of transmitter release. Prog Biophys Mol Biol. 1970;21:33–124. [PubMed] [Google Scholar]
  10. Igić R., Stern P. The effect of oxotremorine on the "free" and "bound" brain acetylcholine concentrations and motor activity in beri-beri pigeons. Can J Physiol Pharmacol. 1971 Nov;49(11):985–987. doi: 10.1139/y71-136. [DOI] [PubMed] [Google Scholar]
  11. Johnson E. W., Wernig A. The binomial nature of transmitter release at the crayfish neuromuscular junction. J Physiol. 1971 Nov;218(3):757–767. doi: 10.1113/jphysiol.1971.sp009642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Klingman G. I. The distribution of acetylcholinesterase in sympathetic ganglia of immunosympathectomized rats. J Pharmacol Exp Ther. 1970 May;173(1):205–211. [PubMed] [Google Scholar]
  13. Kuno M., Miyahara J. T. Non-linear summation of unit synaptic potentials in spinal motoneurones of the cat. J Physiol. 1969 Apr;201(2):465–477. doi: 10.1113/jphysiol.1969.sp008767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kuno M. Quantum aspects of central and ganglionic synaptic transmission in vertebrates. Physiol Rev. 1971 Oct;51(4):647–678. doi: 10.1152/physrev.1971.51.4.647. [DOI] [PubMed] [Google Scholar]
  15. Marchbanks R. M. The uptake of [14C] choline into synaptosomes in vitro. Biochem J. 1968 Dec;110(3):533–541. doi: 10.1042/bj1100533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Perri V., Sacchi O., Caella C. Electrical properties and synaptic connections of the sympathetic neurons in the rat and guinea-pig superior cervical ganglion. Pflugers Arch. 1970;314(1):40–54. doi: 10.1007/BF00587045. [DOI] [PubMed] [Google Scholar]
  17. Perri V., Sacchi O., Casella C. Nervous transmission in the superior cervical ganglion of the thiamine-deficient rat. Q J Exp Physiol Cogn Med Sci. 1970 Jan;55(1):25–35. doi: 10.1113/expphysiol.1970.sp002047. [DOI] [PubMed] [Google Scholar]
  18. Perri V., Sacchi O., Casella C. Synaptically mediated potentials elicited by the stimulation of post-ganglionic trunks in the guinea-pig superior cervical ganglion. Pflugers Arch. 1970;314(1):55–67. doi: 10.1007/BF00587046. [DOI] [PubMed] [Google Scholar]
  19. Potter L. T. Synthesis, storage and release of [14C]acetylcholine in isolated rat diaphragm muscles. J Physiol. 1970 Jan;206(1):145–166. doi: 10.1113/jphysiol.1970.sp009003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sacchi O., Perri V. Quantal release of acetylcholine from the nerve endings of the guinea-pig superior cervical ganglion. Pflugers Arch. 1971;329(3):207–219. doi: 10.1007/BF00586615. [DOI] [PubMed] [Google Scholar]
  21. Speeg K. V., Jr, Chen D., McCandless D. W., Schenker S. Cerebral acetylcholine in thiamine deficiency. Proc Soc Exp Biol Med. 1970 Sep;134(4):1005–1009. doi: 10.3181/00379727-134-34932. [DOI] [PubMed] [Google Scholar]
  22. Tucek S., Cheng S. C. Precursors of acetyl groups in acetylcholine in the brain in vivo. Biochim Biophys Acta. 1970 Jun;208(3):538–540. doi: 10.1016/0304-4165(70)90230-8. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES