Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1973 Jan 1;61(1):89–109. doi: 10.1085/jgp.61.1.89

Ion Levels and Membrane Potential in Chick Heart Tissue and Cultured Cells

Terence F McDonald 1, Robert L DeHaan 1
PMCID: PMC2203458  PMID: 4683099

Abstract

Intracellular concentrations of sodium and potassium as well as resting potentials and overshoots have been determined in heart tissue from chick embryos aged 2–18 days. Intracellular potassium declined from 167 mM at day 2 to 117–119 mM at days 14–18. Intracellular sodium remained nearly constant at 30–35 mM during the same period. The mean resting potential increased from -61.8 mV at day 3 to about -80 mV at days 14–18. The mean overshoot during the same period increased from 12 to 30 mV. P Na/P K calculated from the ion data and resting potentials declined from 0.08 at day 3 to 0.01 at days 14–18. Thus, the development of embryonic chick heart during days 2–14 is characterized by a declining intracellular potassium concentration and an increasing resting potential and overshoot. Heart cells from 7- to 8-day embryos, cultured either in monolayer or reassociated into aggregates, were compared with intact tissue of the same age. The intracellular concentrations of sodium and potassium were similar in the three preparations and cultured cells responded to incubation in low potassium medium or treatment with ouabain in a manner similar to that of intact tissue. Resting potentials and overshoots were also similar in the three preparations.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BITTNER J., HEINZ E. DIE WIRKUNG VON G-STROPHANTIN AUF DEN GLYZINTRANSPORT IN EHRLICH-ASCITES-TUMORZELLEN. Biochim Biophys Acta. 1963 Aug 13;74:392–400. doi: 10.1016/0006-3002(63)91383-0. [DOI] [PubMed] [Google Scholar]
  2. BURROWS R., LAMB J. F. Sodium and potassium fluxes in cells cultured from chick embryo heart muscle. J Physiol. 1962 Aug;162:510–531. doi: 10.1113/jphysiol.1962.sp006947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beeler G. W., Jr, Reuter H. Voltage clamp experiments on ventricular myocarial fibres. J Physiol. 1970 Mar;207(1):165–190. doi: 10.1113/jphysiol.1970.sp009055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boethius J., Knutsson E. Resting membrane potential in chick muscle cells during ontogeny. J Exp Zool. 1970 Jul;174(3):281–286. doi: 10.1002/jez.1401740304. [DOI] [PubMed] [Google Scholar]
  5. Brady A. J., Woodbury J. W. The sodium-potassium hypothesis as the basis of electrical activity in frog ventricle. J Physiol. 1960 Dec;154(2):385–407. doi: 10.1113/jphysiol.1960.sp006586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DeHaan R. L., Gottlieb S. H. The electrical activity of embryonic chick heart cells isolated in tissue culture singly or in interconnected cell sheets. J Gen Physiol. 1968 Oct;52(4):643–665. doi: 10.1085/jgp.52.4.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DeHaan R. L., Hirakow R. Synchronizatin of pulsation rates in isolated cardiac myocytes. Exp Cell Res. 1972 Jan;70(1):214–220. doi: 10.1016/0014-4827(72)90199-1. [DOI] [PubMed] [Google Scholar]
  8. DeHaan R. L. The potassium-sensitivity of isolated embryonic heart cells increases with development. Dev Biol. 1970 Oct;23(2):226–240. doi: 10.1016/0012-1606(70)90096-5. [DOI] [PubMed] [Google Scholar]
  9. DeHann R. L. Regulation of spontaneous activity and growth of embryonic chick heart cells in tissue culture. Dev Biol. 1967 Sep;16(3):216–249. doi: 10.1016/0012-1606(67)90025-5. [DOI] [PubMed] [Google Scholar]
  10. Ecker R. E., Smith L. D. Influence of exogenous ions on the events of maturation in Rana pipiens oocytes. J Cell Physiol. 1971 Feb;77(1):61–70. doi: 10.1002/jcp.1040770108. [DOI] [PubMed] [Google Scholar]
  11. FANGE R., PERSSON H., THESLEFF S. Electrophysiologic and pharmacological observations on trypsin-disintegrated embryonic chick hearts cultured in vitro. Acta Physiol Scand. 1956 Dec 31;38(2):173–183. doi: 10.1111/j.1748-1716.1957.tb01381.x. [DOI] [PubMed] [Google Scholar]
  12. GUIDOTTI G., FOA P. P. Development of an insulin-sensitive glucose transport system in chick embryo hearts. Am J Physiol. 1961 Nov;201:869–872. doi: 10.1152/ajplegacy.1961.201.5.869. [DOI] [PubMed] [Google Scholar]
  13. Gadsby D. C., Niedergerke R., Page S. Do intracellular concentrations of potassium or sodium regulate the strength of the heart beat? Nature. 1971 Aug 27;232(5313):651–653. doi: 10.1038/232651a0. [DOI] [PubMed] [Google Scholar]
  14. Glitsch H. G. Uber das Membranpotential des Meerschweinchenvorhofes nach Hypothermie. Pflugers Arch. 1969;307(1):29–46. doi: 10.1007/BF00589457. [DOI] [PubMed] [Google Scholar]
  15. Guidotti G. G., Borghetti A. F., Gaja G., Loreti L., Ragnotti G., Foà P. P. Amino acid uptake in the developing chick embryo heart. The effect of insulin on alpha-aminoisobutyric acid accumulation. Biochem J. 1968 Apr;107(4):565–574. doi: 10.1042/bj1070565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. HARSCH M., GREEN J. W. ELECTROLYTE ANALYSES OF CHICK EMBRYONIC FLUIDS AND HEART TISSUES. J Cell Physiol. 1963 Dec;62:319–326. doi: 10.1002/jcp.1030620312. [DOI] [PubMed] [Google Scholar]
  17. HODGKIN A. L., HUXLEY A. F. The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J Physiol. 1952 Apr;116(4):497–506. doi: 10.1113/jphysiol.1952.sp004719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jung C., Rothstein A. Cation metabolism in relation to cell size in synchronously grown tissue culture cell. J Gen Physiol. 1967 Mar;50(4):917–932. doi: 10.1085/jgp.50.4.917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. KLEIN R. L. A possible correlation between ATPase activity and Na content of embryonic chick heart. Am J Physiol. 1961 Nov;201:858–862. doi: 10.1152/ajplegacy.1961.201.5.858. [DOI] [PubMed] [Google Scholar]
  20. KLEIN R. L., EVANS M. L. Effects of ouabain, hypothermia and anoxia on cation fluxes in embryonic chick heart. Am J Physiol. 1961 Apr;200:735–740. doi: 10.1152/ajplegacy.1961.200.4.735. [DOI] [PubMed] [Google Scholar]
  21. KLEIN R. L. HIGH NA CONTENT OF EARLY EMBRYONIC CHICK HEART. Am J Physiol. 1963 Aug;205:370–374. doi: 10.1152/ajplegacy.1963.205.2.370. [DOI] [PubMed] [Google Scholar]
  22. KLEIN R. L. Ontogenesis of K and Na fluxes in embryonic chick heart. Am J Physiol. 1960 Oct;199:613–618. doi: 10.1152/ajplegacy.1960.199.4.613. [DOI] [PubMed] [Google Scholar]
  23. Krespi V., Sleator W. W., Jr A study of the ontogeny of action potentials in chick embryo hearts. Life Sci. 1966 Aug;5(16):1441–1446. doi: 10.1016/0024-3205(66)90217-7. [DOI] [PubMed] [Google Scholar]
  24. LEHMKUHL D., SPERELAKIS N. TRANSMEMBRANE POTENTIALS OF TRYPSIN-DISPERSED CHICK HEART CELLS CULTURED IN VITRO. Am J Physiol. 1963 Dec;205:1213–1220. doi: 10.1152/ajplegacy.1963.205.6.1213. [DOI] [PubMed] [Google Scholar]
  25. Lamb J. F., MacKinnon M. G. Effect of ouabain and metabolic inhibitors on the Na and K movements and nucleotide contents of L cells. J Physiol. 1971 Mar;213(3):665–682. doi: 10.1113/jphysiol.1971.sp009407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lieberman M. Effects of cell density and low K on action potentials of cultured chick heart cells. Circ Res. 1967 Dec;21(6):879–888. doi: 10.1161/01.res.21.6.879. [DOI] [PubMed] [Google Scholar]
  27. Lieberman M., Roggeveen A. E., Purdy J. E., Johnson E. A. Synthetic strands of cardiac muscle: growth and physiological implication. Science. 1972 Feb 25;175(4024):909–911. doi: 10.1126/science.175.4024.909. [DOI] [PubMed] [Google Scholar]
  28. Ling G. N., Kromash M. H. The extracellular space of voluntary muscle tissues. J Gen Physiol. 1967 Jan;50(3):677–694. doi: 10.1085/jgp.50.3.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lubin M. Intracellular potassium and macromolecular synthesis in mammalian cells. Nature. 1967 Feb 4;213(5075):451–453. doi: 10.1038/213451a0. [DOI] [PubMed] [Google Scholar]
  30. MOLINARO M., HULTIN T. THE ANOMALOUS POTASSIUM REQUIREMENT OF AMINO ACID INCORPORATING SYSTEMS FROM SEA URCHIN EGGS. Exp Cell Res. 1965 May;38:398–411. doi: 10.1016/0014-4827(65)90413-1. [DOI] [PubMed] [Google Scholar]
  31. McDonald T. F., MacLeod D. P. Maintenance of resting potential in anoxic guinea pig ventricular muscle: electrogenic sodium pumping. Science. 1971 May 7;172(3983):570–572. doi: 10.1126/science.172.3983.570. [DOI] [PubMed] [Google Scholar]
  32. McDonald T. F., Sachs H. G., DeHaan R. L. Development of sensitivity to tetrodotoxin in beating chick embryo hearts, single cells, and aggregates. Science. 1972 Jun 16;176(4040):1248–1250. doi: 10.1126/science.176.4040.1248. [DOI] [PubMed] [Google Scholar]
  33. McDonald T. F., Sachs H. G., Orr C. W., Ebert J. D. External potassium and baby hamster kidney cells: intracellular ions, ATP, growth, DNA synthesis and membrane potential. Dev Biol. 1972 May;28(1):290–303. doi: 10.1016/0012-1606(72)90145-5. [DOI] [PubMed] [Google Scholar]
  34. Moore E. N. Experimental electrophysiological studies on avian hearts. Ann N Y Acad Sci. 1965 Sep 8;127(1):127–144. doi: 10.1111/j.1749-6632.1965.tb49397.x. [DOI] [PubMed] [Google Scholar]
  35. Morrill G. A., Robbins E. The role of calcium in the regulation of the steady-state levels of sodium and potassium in the HeLa cell. J Gen Physiol. 1967 Mar;50(4):781–792. doi: 10.1085/jgp.50.4.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Noble D. Applications of Hodgkin-Huxley equations to excitable tissues. Physiol Rev. 1966 Jan;46(1):1–50. doi: 10.1152/physrev.1966.46.1.1. [DOI] [PubMed] [Google Scholar]
  37. PAGE E. Cat heart muscle in vitro. II. The steady state restpotential in quiescent papillary muscles. J Gen Physiol. 1962 Nov;46:189–199. doi: 10.1085/jgp.46.2.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. PAGE E., STORN S. R. CAT HEART MUSCLE IN VITRO. 8. ACTIVE TRANSPORT OF SODIUM IN PAPILLARY MUSCLES. J Gen Physiol. 1965 May;48:957–972. doi: 10.1085/jgp.48.5.957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Page E. Ion movement in heart muscle: tissue compartments and the experimental definition of driving forces. Ann N Y Acad Sci. 1965 Sep 8;127(1):34–48. doi: 10.1111/j.1749-6632.1965.tb49391.x. [DOI] [PubMed] [Google Scholar]
  40. Pappano A. J. Sodium-dependent depolarization of noninnervated embryonic chick heart by acetylcholine. J Pharmacol Exp Ther. 1972 Feb;180(2):340–350. [PubMed] [Google Scholar]
  41. Shigenobu K., Sperelakis N. Development of sensitivity to tetrodotoxin of chick embryonic hearts with age. J Mol Cell Cardiol. 1971 Dec;3(3):271–286. doi: 10.1016/0022-2828(71)90046-0. [DOI] [PubMed] [Google Scholar]
  42. Sperelakis N., Shigenobu K. Changes in membrane properties of chick embryonic hearts during development. J Gen Physiol. 1972 Oct;60(4):430–453. doi: 10.1085/jgp.60.4.430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Suelter C. H. Enzymes activated by monovalent cations. Science. 1970 May 15;168(3933):789–795. doi: 10.1126/science.168.3933.789. [DOI] [PubMed] [Google Scholar]
  44. Taylor G. S., Paton D. M., Daniel E. E. Characteristics of electrogenic sodium pumping in rat myometrium. J Gen Physiol. 1970 Sep;56(3):360–375. doi: 10.1085/jgp.56.3.360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Thureson-Klein A., Klein R. L. Cation distribution and cardiac jelly in early embryonic heart: a histochemical and electron microscopic study. J Mol Cell Cardiol. 1971 Mar;2(1):31–40. doi: 10.1016/0022-2828(71)90076-9. [DOI] [PubMed] [Google Scholar]
  46. Vick R. L., Hazlewood C. F., Nichols B. L. Distribution of potassium, sodium, and chloride in canine Purkinje and ventricular tissues. Relation to cellular potential. Circ Res. 1970 Aug;27(2):159–169. doi: 10.1161/01.res.27.2.159. [DOI] [PubMed] [Google Scholar]
  47. WEIDMANN S. The effect of the cardiac membrane potential on the rapid availability of the sodium-carrying system. J Physiol. 1955 Jan 28;127(1):213–224. doi: 10.1113/jphysiol.1955.sp005250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. WICKSON-GINZBURG M., SOLOMON A. K. ELECTROLYTE METABOLISM IN HELA CELLS. J Gen Physiol. 1963 Jul;46:1303–1315. doi: 10.1085/jgp.46.6.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Yeh B. K., Hoffman B. F. The ionic basis of electrical activity in embryonic cardiac muscle. J Gen Physiol. 1968 Oct;52(4):666–681. doi: 10.1085/jgp.52.4.666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. de Carvalho A. P., Hoffman B. F., de Carvalho M. P. Two components of the cardiac action potential. I. Voltage-time course and the effect of acetylcholine on atrial and nodal cells of the rabbit heart. J Gen Physiol. 1969 Nov;54(5):607–635. doi: 10.1085/jgp.54.5.607. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES