Abstract
Phosphatidylglycerol was pulse-labeled with radioactive lipid precursors in a serine auxotroph of Escherichia coli. Most of the radioactivity of phosphatidylglycerol labeled in a serine-depleted medium was transferred to phosphatidylethanolamine during a chase in the presence of L-serine, but not in its absence. Metabolism of fatty acyl moieties labeled with [1-14C]acetate, acylated glycerol moieties labeled with [2-3H]glycerol, and phosphate moieties labeled with 32Pi, followed by a chase in the presence of cerulenin, showed that the intact phosphatidyl moiety of phosphatidylglycerol was transferred to phosphatidylethanolamine. The composition of phosphatidylethanolamine molecular species was unaltered and not perturbed by the transfer of the phosphatidyl moiety of phosphatidylglycerol. The increase of phosphatidylethanolamine with a concomitant decrease of phosphatidylglycerol was not coupled with the postulated turnover of phosphatidylglycerol to membrane-derived oligosaccharides and lipoprotein. It is suggested that phosphatidylglycerol is capable of providing its phosphatidyl moiety for the production of phosphatidylethanolamine in response to the relief of serine limitation by addition of L-serine.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albright F. R., White D. A., Lennarz W. J. Studies on enzymes involved in the catabolism of phospholipids in Escherichia coli. J Biol Chem. 1973 Jun 10;248(11):3968–3977. [PubMed] [Google Scholar]
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- Ballesta J. P., De Garcia C. L., Schaechter M. Turnover of phosphatidylglycerol in Escherichia coli. J Bacteriol. 1973 Oct;116(1):210–214. doi: 10.1128/jb.116.1.210-214.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bergmans H. E., van Die I. M., Hoekstra W. P. Transformation in Escherichia coli: stages in the process. J Bacteriol. 1981 May;146(2):564–570. doi: 10.1128/jb.146.2.564-570.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brass J. M., Boos W., Hengge R. Reconstitution of maltose transport in malB mutants of Escherichia coli through calcium-induced disruptions of the outer membrane. J Bacteriol. 1981 Apr;146(1):10–17. doi: 10.1128/jb.146.1.10-17.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Braun V. Covalent lipoprotein from the outer membrane of Escherichia coli. Biochim Biophys Acta. 1975 Oct 31;415(3):335–377. doi: 10.1016/0304-4157(75)90013-1. [DOI] [PubMed] [Google Scholar]
- Carty C. E., Ingram L. O. Lipid synthesis during the Escherichia coli cell cycle. J Bacteriol. 1981 Jan;145(1):472–478. doi: 10.1128/jb.145.1.472-478.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chattopadhyay P. K., Lai J. S., Wu H. C. Incorporation of phosphatidylglycerol into murein lipoprotein in intact cells of Salmonella typhimurium by phospholipid vesicle fusion. J Bacteriol. 1979 Jan;137(1):309–312. doi: 10.1128/jb.137.1.309-312.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chattopadhyay P. K., Wu H. C. Biosynthesis of the covalently linked diglyceride in murein lipoprotein of Escherichia coli. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5318–5322. doi: 10.1073/pnas.74.12.5318. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cronan J. E., Jr Molecular biology of bacterial membrane lipids. Annu Rev Biochem. 1978;47:163–189. doi: 10.1146/annurev.bi.47.070178.001115. [DOI] [PubMed] [Google Scholar]
- Cronan J. E., Vagelos P. R. Metabolism and function of the membrane phospholipids of Escherichia coli. Biochim Biophys Acta. 1972 Feb 14;265(1):25–60. doi: 10.1016/0304-4157(72)90018-4. [DOI] [PubMed] [Google Scholar]
- Dowhan W., Wickner W. T., Kennedy E. P. Purification and properties of phosphatidylserine decarboxylase from Escherichia coli. J Biol Chem. 1974 May 25;249(10):3079–3084. [PubMed] [Google Scholar]
- Hantke K., Braun V. Covalent binding of lipid to protein. Diglyceride and amide-linked fatty acid at the N-terminal end of the murein-lipoprotein of the Escherichia coli outer membrane. Eur J Biochem. 1973 Apr;34(2):284–296. doi: 10.1111/j.1432-1033.1973.tb02757.x. [DOI] [PubMed] [Google Scholar]
- Hirschberg C. B., Kennedy E. P. Mechanism of the enzymatic synthesis of cardiolipin in Escherichia coli. Proc Natl Acad Sci U S A. 1972 Mar;69(3):648–651. doi: 10.1073/pnas.69.3.648. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Irvin R. T., MacAlister T. J., Chan R., Costerton J. W. Citrate-tris(hydroxymethyl)aminomethane-mediated release of outer membrane sections from the cell envelope of a deep-rough (heptose-deficient lipopolysaccharide) strain of Escherichia coli O8. J Bacteriol. 1981 Mar;145(3):1386–1396. doi: 10.1128/jb.145.3.1386-1396.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishinaga M., Kanamoto R., Kito M. Distribution of phospholipid molecular species in outer and cytoplasmic membrane of Escherichia coli. J Biochem. 1979 Jul;86(1):161–165. [PubMed] [Google Scholar]
- Ishinaga M., Nishihara M., Kato M., Kito M. Function of phosphatidylglycerol molecular species in membranes. Activation of membrane-bound sn-glycerol 3-phosphate acyltransferase in Escherichia coli. Biochim Biophys Acta. 1976 Jun 22;431(3):426–432. [PubMed] [Google Scholar]
- Jones N. C., Osborn M. J. Interaction of Salmonella typhimurium with phospholipid vesicles. Incorporation of exogenous lipids into intact cells. J Biol Chem. 1977 Oct 25;252(20):7398–7404. [PubMed] [Google Scholar]
- Kito M., Ishinaga M., Nishihara M. Function of phospholipids on the regulatory properties of solubilized and membrane-bound sn-glycerol-3-phosphate acyltransferase of Escherichia coli. Biochim Biophys Acta. 1978 May 25;529(2):237–249. [PubMed] [Google Scholar]
- Kito M., Ishinaga M., Nishihara M., Kato M., Sawada S. Metabolism of the phosphatidylglycerol molecular species in Escherichia coli. Eur J Biochem. 1975 May;54(1):55–63. doi: 10.1111/j.1432-1033.1975.tb04113.x. [DOI] [PubMed] [Google Scholar]
- Kito M., Pizer L. I. Phosphatidic acid synthesis in Escherichia coli. J Bacteriol. 1969 Mar;97(3):1321–1327. doi: 10.1128/jb.97.3.1321-1327.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kobayashi T., Nishijima M., Tamori Y., Nojima S., Seyama Y., Yamakawa T. Acyl phosphatidylglycerol of Escherichia coli. Biochim Biophys Acta. 1980 Dec 5;620(3):356–363. [PubMed] [Google Scholar]
- LEIVE L. A NONSPECIFIC INCREASE IN PERMEABILITY IN ESCHERICHIA COLI PRODUCED BY EDTA. Proc Natl Acad Sci U S A. 1965 Apr;53:745–750. doi: 10.1073/pnas.53.4.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lai J. S., Wu H. C. Incorporation of acyl moieties of phospholipids into murein lipoprotein in intact cells of Escherichia coli by phospholipid vesicle fusion. J Bacteriol. 1980 Oct;144(1):451–453. doi: 10.1128/jb.144.1.451-453.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lai S. H., Philbrick W. M., Wu H. C. Acyl moieties in phospholipids are the precursors for the fatty acids in murein lipoprotein of Escherichia coli. J Biol Chem. 1980 Jun 10;255(11):5384–5387. [PubMed] [Google Scholar]
- Luzon C., Ballesta J. P. Metabolism of phosphatidylglycerol in cell-free extracts of Escherichia coli. Eur J Biochem. 1976 May 17;65(1):207–212. doi: 10.1111/j.1432-1033.1976.tb10407.x. [DOI] [PubMed] [Google Scholar]
- Nishihara M., Ishinaga M., Kato M., Kito M. Temperature-sensitive formation of the phospholipid molecular species in Escherichia coli membranes. Biochim Biophys Acta. 1976 Apr 22;431(1):54–61. [PubMed] [Google Scholar]
- Nishijima M., Bulawa C. E., Raetz C. R. Two interacting mutations causing temperature-sensitive phosphatidylglycerol synthesis in Escherichia coli membranes. J Bacteriol. 1981 Jan;145(1):113–121. doi: 10.1128/jb.145.1.113-121.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Proulx P. R., Van Deenen L. L. Phospholipase activities of Escherichia coli. Biochim Biophys Acta. 1967 Aug 8;144(1):171–174. doi: 10.1016/0005-2760(67)90092-6. [DOI] [PubMed] [Google Scholar]
- Raetz C. R. Enzymology, genetics, and regulation of membrane phospholipid synthesis in Escherichia coli. Microbiol Rev. 1978 Sep;42(3):614–659. doi: 10.1128/mr.42.3.614-659.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raetz C. R., Newman K. F. Diglyceride kinase mutants of Escherichia coli: inner membrane association of 1,2-diglyceride and its relation to synthesis of membrane-derived oligosaccharides. J Bacteriol. 1979 Feb;137(2):860–868. doi: 10.1128/jb.137.2.860-868.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sabelnikov A. G., Domaradsky I. V. Effect of metabolic inhibitors on entry of exogenous deoxyribonucleic acid into Ca2+-treated Escherichia coli cells. J Bacteriol. 1981 May;146(2):435–443. doi: 10.1128/jb.146.2.435-443.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Satre M., Kennedy E. P. Identification of bound pyruvate essential for the activity of phosphatidylserine decarboxylase of Escherichia coli. J Biol Chem. 1978 Jan 25;253(2):479–483. [PubMed] [Google Scholar]
- Schulman H., Kennedy E. P. Relation of turnover of membrane phospholipids to synthesis of membrane-derived oligosaccharides of Escherichia coli. J Biol Chem. 1977 Jun 25;252(12):4250–4255. [PubMed] [Google Scholar]
- Wicken A. J., Knox K. W. Bacterial cell surface amphiphiles. Biochim Biophys Acta. 1980 May 27;604(1):1–26. doi: 10.1016/0005-2736(80)90583-0. [DOI] [PubMed] [Google Scholar]
- Yokota K., Kanamoto R., Kito M. Composition of cardiolipin molecular species in Escherichia coli. J Bacteriol. 1980 Mar;141(3):1047–1051. doi: 10.1128/jb.141.3.1047-1051.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Golde L. M. Metabolism of membrane phospholipids and its relation to a novel class of oligosaccharides in Escherichia coli. Proc Natl Acad Sci U S A. 1973 May;70(5):1368–1372. doi: 10.1073/pnas.70.5.1368. [DOI] [PMC free article] [PubMed] [Google Scholar]