Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1973 Apr 1;61(4):462–481. doi: 10.1085/jgp.61.4.462

Calcium Uptake and Associated Adenosine Triphosphatase Activity of Isolated Platelet Membranes

Lois S Robblee 1, David Shepro 1, Frank A Belamarich 1
PMCID: PMC2203473  PMID: 4266586

Abstract

A platelet subcellular fraction, sedimenting between 14,000 and 40,000 g and consisting primarily of membrane vesicles, accumulates up to 200–400 nmoles calcium/mg protein in the presence of ATP and oxalate. Steady-state levels of calcium accumulation are attained in 40–60 min. Calcium uptake requires adenosine triphosphate (ATP), is enhanced by oxalate, and is accompanied by the release of inorganic phosphate. Calcium accumulation and phosphate release require magnesium and are inhibited by Salyrgan (10 µM) and adenosine diphosphate (ADP) (1 mM), but not by ouabain (0.1 mM). The ATPase activity is stimulated by low concentrations of calcium (5–10 µM) and is inhibited by 2 mM EGTA. Electron microscopic histochemistry using lead nitrate to precipitate released phosphate results in lead precipitates localized primarily at the inner surface of membrane vesicles. These results provide evidence for a membrane ATPase that is stimulated by low concentrations of calcium and may be involved in the transport of calcium across the membrane. It is postulated that the observed calcium uptake activity is an in vitro manifestation of a calcium extrusion pump in the intact platelet.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Behnke O. Electron microscopic observations on the membrane systems of the rat blood platelet. Anat Rec. 1967 Jun;158(2):121–137. doi: 10.1002/ar.1091580203. [DOI] [PubMed] [Google Scholar]
  2. Carsten M. E. Role of calcium binding by sarcoplasmic reticulum in the contraction and relaxation of uterine smooth muscle. J Gen Physiol. 1969 Apr;53(4):414–426. doi: 10.1085/jgp.53.4.414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carvalho A. P., Leo B. Effects of ATP on the interaction of Ca++, Mg++, and K+ with fragmented sarcoplasmic reticulum isolated from rabbit skeletal muscle. J Gen Physiol. 1967 May;50(5):1327–1352. doi: 10.1085/jgp.50.5.1327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cha Y. N., Shin B. C., Lee K. S. Active uptake of Ca++ and Ca plus,plus-activated Mg++ ATPase in red cell membrane fragments. J Gen Physiol. 1971 Feb;57(2):202–215. doi: 10.1085/jgp.57.2.202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DELSAL J. L., MANHOURI H. Etude comparative des dosages colorimétriques du phosphore. IV. Dosage de l'orthophosphate en présence d'esters phosphoriques; nouvelles méthodes. Bull Soc Chim Biol (Paris) 1958;40(11):1623–1636. [PubMed] [Google Scholar]
  6. Diamond I., Goldberg A. L. Uptake and release of 45Ca by brain microsomes, synaptosomes and synaptic vesicles. J Neurochem. 1971 Aug;18(8):1419–1431. doi: 10.1111/j.1471-4159.1971.tb00005.x. [DOI] [PubMed] [Google Scholar]
  7. Douglas W. W. Stimulus-secretion coupling: the concept and clues from chromaffin and other cells. Br J Pharmacol. 1968 Nov;34(3):451–474. doi: 10.1111/j.1476-5381.1968.tb08474.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ebashi S., Endo M. Calcium ion and muscle contraction. Prog Biophys Mol Biol. 1968;18:123–183. doi: 10.1016/0079-6107(68)90023-0. [DOI] [PubMed] [Google Scholar]
  9. GRETTE K. Relaxing factor in extracts of blood platelets and its function in the cells. Nature. 1963 May 4;198:488–489. doi: 10.1038/198488a0. [DOI] [PubMed] [Google Scholar]
  10. HASSELBACH W., MAKINOSE M. [The calcium pump of the "relaxing granules" of muscle and its dependence on ATP-splitting]. Biochem Z. 1961;333:518–528. [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. MARSH B. B. The effects of adenosine triphosphate on the fibre volume of a muscle homogenate. Biochim Biophys Acta. 1952 Sep;9(3):247–260. doi: 10.1016/0006-3002(52)90159-5. [DOI] [PubMed] [Google Scholar]
  14. MARTONOSI A., FERETOS R. SARCOPLASMIC RETICULUM. I. THE UPTAKE OF CA++ BY SARCOPLASMIC RETICULUM FRAGMENTS. J Biol Chem. 1964 Feb;239:648–658. [PubMed] [Google Scholar]
  15. MUELLER H. The action of relaxing factor on actomyosin. Biochim Biophys Acta. 1960 Mar 25;39:93–103. doi: 10.1016/0006-3002(60)90126-8. [DOI] [PubMed] [Google Scholar]
  16. Matsushita S., Raacke I. D. Purification of nucleoside triphosphatases from pea seedling ribosomes. Biochim Biophys Acta. 1968 Oct 29;166(3):707–710. doi: 10.1016/0005-2787(68)90380-8. [DOI] [PubMed] [Google Scholar]
  17. Mustard J. F., Packham M. A. Factors influencing platelet function: adhesion, release, and aggregation. Pharmacol Rev. 1970 Jun;22(2):97–187. [PubMed] [Google Scholar]
  18. Otsuka M., Ohtsuki I., Ebashi S. ATP-dependent Ca binding of brain microsomes. J Biochem. 1965 Aug;58(2):188–190. doi: 10.1093/oxfordjournals.jbchem.a128184. [DOI] [PubMed] [Google Scholar]
  19. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schatzmann H. J. ATP-dependent Ca++-extrusion from human red cells. Experientia. 1966 Jun 15;22(6):364–365. doi: 10.1007/BF01901136. [DOI] [PubMed] [Google Scholar]
  21. Schatzmann H. J., Vincenzi F. F. Calcium movements across the membrane of human red cells. J Physiol. 1969 Apr;201(2):369–395. doi: 10.1113/jphysiol.1969.sp008761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Statland B. E., Heagan B. M., White J. G. Uptake of calcium by platelet relaxing factor. Nature. 1969 Aug 2;223(5205):521–522. doi: 10.1038/223521a0. [DOI] [PubMed] [Google Scholar]
  23. Steck T. L., Weinstein R. S., Straus J. H., Wallach D. F. Inside-out red cell membrane vesicles: preparation and purification. Science. 1970 Apr 10;168(3928):255–257. doi: 10.1126/science.168.3928.255. [DOI] [PubMed] [Google Scholar]
  24. Tice L. W., Engel A. G. Cytochemistry of phosphatases of the sarcoplasmic reticulum. II. In situ localization of the Mg-dependent enzyme. J Cell Biol. 1966 Dec;31(3):489–499. doi: 10.1083/jcb.31.3.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. WEBER A., HERZ R., REISS I. On the mechanism of the relaxing effect of fragmented sarcoplasmic reticulum. J Gen Physiol. 1963 Mar;46:679–702. doi: 10.1085/jgp.46.4.679. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES