Abstract
The mass photoreceptor response of the isolated carp retina was studied after immersing the tissue in aspartate-Ringer solution. Two electro-retinogram components were isolated by differential depth recording: a fast cornea-negative wave, arising in the receptor layer, and a slow, cornea-negative wave arising at some level proximal to the photoreceptors. Only the fast component was investigated further. In complete dark adaptation, its action spectrum peaked near 540 nm and indicated input from both porphyropsin-containing rods (λmax ≈ 525 nm) and cones with longer wavelength sensitivity. Under photopic conditions a broad action spectrum, λmax ≈ 580 nm was seen. In the presence of chromatic backgrounds, the photopic curve could be fractionated into three components whose action spectra agreed reasonably well with the spectral characteristics of blue, green, and red cone pigments of the goldfish. In parallel studies, the carp rod pigment was studied in situ by transmission densitometry. The reduction in optical density after a full bleach averaged 0.28 at its λmax 525 nm. In the isolated retina no regeneration of rod pigment occurred within 2 h after bleaching. The bleaching power of background fields used in adaptation experiments was determined directly. Both rods and cones generated increment threshold functions with slopes of +1 on log-log coordinates over a 3–4 log range of background intensities. Background fields which bleached less than 0.5% rod pigment nevertheless diminished photoreceptor sensitivity. The degree and rate of recovery of receptor sensitivity after exposure to a background field was a function of the total flux (I x t) of the field. Rod saturation, i.e. the abolition of rod voltages, occurred after ≈12% of rod pigment was bleached. In light-adapted retinas bathed in normal Ringer solution, a small test flash elicited a larger response in the presence of an annular background field than when it fell upon a dark retina. The enhancement was not observed in aspartate-treated retinas.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ames A., 3rd, Tsukada Y., Nesbett F. B. Intracellular Cl-, Na+, K+, Ca2+, Mg2+, and P in nervous tissue; response to glutamate and to changes in extracellular calcium. J Neurochem. 1967 Feb;14(2):145–159. doi: 10.1111/j.1471-4159.1967.tb05887.x. [DOI] [PubMed] [Google Scholar]
- Baumann C. Regeneration of porphyropsin in vivo. Nature. 1971 Oct 15;233(5320):484–485. doi: 10.1038/233484a0. [DOI] [PubMed] [Google Scholar]
- Baumann C. Sehpurpurbleichung und Stäbchenfunktion in der isolierten Froschndtzhaut. 3. Die Dunkeladaptation des skotopischen Systems nach partieller Sehpurpurbleichung. Pflugers Arch Gesamte Physiol Menschen Tiere. 1967;298(1):70–81. [PubMed] [Google Scholar]
- Baylor D. A., Fuortes M. G., O'Bryan P. M. Receptive fields of cones in the retina of the turtle. J Physiol. 1971 Apr;214(2):265–294. doi: 10.1113/jphysiol.1971.sp009432. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bortoff A. Localization of slow potential responses in the Necturus retina. Vision Res. 1964 Dec;4(11):627–635. doi: 10.1016/0042-6989(64)90048-3. [DOI] [PubMed] [Google Scholar]
- Boynton R. M., Whitten D. N. Visual adaptation in monkey cones: recordings of late receptor potentials. Science. 1970 Dec 25;170(3965):1423–1426. doi: 10.1126/science.170.3965.1423. [DOI] [PubMed] [Google Scholar]
- Bridges C. D. Spectroscopic properties of porphyropsins. Vision Res. 1967 May;7(5):349–369. doi: 10.1016/0042-6989(67)90044-2. [DOI] [PubMed] [Google Scholar]
- Brown K. T., Watanabe K., Murakami M. The early and late receptor potentials of monkey cones and rods. Cold Spring Harb Symp Quant Biol. 1965;30:457–482. doi: 10.1101/sqb.1965.030.01.045. [DOI] [PubMed] [Google Scholar]
- CONE R. A. QUANTUM RELATIONS OF THE RAT ELECTRORETINOGRAM. J Gen Physiol. 1963 Jul;46:1267–1286. doi: 10.1085/jgp.46.6.1267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CRESCITELLI F., DARTNALL H. J. A photosensitive pigment of the carp retina. J Physiol. 1954 Sep 28;125(3):607–627. doi: 10.1113/jphysiol.1954.sp005184. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Curtis D. R., Crawford J. M. Central synaptic transmission--microelectrophoretic studies. Annu Rev Pharmacol. 1969;9:209–240. doi: 10.1146/annurev.pa.09.040169.001233. [DOI] [PubMed] [Google Scholar]
- DOWLING J. E. NEURAL AND PHOTOCHEMICAL MECHANISMS OF VISUAL ADAPTATION IN THE RAT. J Gen Physiol. 1963 Jul;46:1287–1301. doi: 10.1085/jgp.46.6.1287. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daw N. W., Beauchamp R. D. Unusual units in the goldfish optic nerve. Vision Res. 1972 Nov;12(11):1849–1856. doi: 10.1016/0042-6989(72)90075-2. [DOI] [PubMed] [Google Scholar]
- Dowling J. E., Ripps H. Adaptation in skate photoreceptors. J Gen Physiol. 1972 Dec;60(6):698–719. doi: 10.1085/jgp.60.6.698. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dowling J. E., Ripps H. Visual adaptation in the retina of the skate. J Gen Physiol. 1970 Oct;56(4):491–520. doi: 10.1085/jgp.56.4.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FATEHCHAND R., LAUFER M., SVAETICHIN G. Retinal receptor potentials and their linear relationship to light intensity. Science. 1962 Aug 31;137(3531):666–668. doi: 10.1126/science.137.3531.666. [DOI] [PubMed] [Google Scholar]
- FURUKAWA T., HANAWA I. Effects of some common cations on electroretinogram of the toad. Jpn J Physiol. 1955 Dec 15;5(4):289–300. doi: 10.2170/jjphysiol.5.289. [DOI] [PubMed] [Google Scholar]
- Frank R. N. Properties of "neural" adaptation in components of the frog electroretinogram. Vision Res. 1971 Oct;11(10):1113–1123. doi: 10.1016/0042-6989(71)90115-5. [DOI] [PubMed] [Google Scholar]
- Green D. G. Light adaptation in the rat retina: evidence for two receptor mechanisms. Science. 1971 Nov 5;174(4009):598–600. doi: 10.1126/science.174.4009.598. [DOI] [PubMed] [Google Scholar]
- Kishida K., Naka K. I. Amino acids and the spikes from the retinal ganglion cells. Science. 1967 May 5;156(3775):648–650. doi: 10.1126/science.156.3775.648. [DOI] [PubMed] [Google Scholar]
- MOTOKAWA K., OIKAWA T., TASAKI K., OGAWA T. The spatial distribution of electric responses to focal illumination of the carp's retina. Tohoku J Exp Med. 1959 Jul 25;70:151–164. doi: 10.1620/tjem.70.151. [DOI] [PubMed] [Google Scholar]
- Murakami M., Kaneko A. Differentiation of P 3 subcomponents in cold-blooded vertebrate retinas. Vision Res. 1966 Dec;6(12):627–636. doi: 10.1016/0042-6989(66)90074-5. [DOI] [PubMed] [Google Scholar]
- Naka K. I., Rushton W. A. S-potentials from colour units in the retina of fish (Cyprinidae). J Physiol. 1966 Aug;185(3):536–555. doi: 10.1113/jphysiol.1966.sp008001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Penn R. D., Hagins W. A. Signal transmission along retinal rods and the origin of the electroretinographic a-wave. Nature. 1969 Jul 12;223(5202):201–204. doi: 10.1038/223201a0. [DOI] [PubMed] [Google Scholar]
- RUSHTON W. A. THE SENSITIVITY OF RODS UNDER ILLUMINATION. J Physiol. 1965 May;178:141–160. doi: 10.1113/jphysiol.1965.sp007620. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ripps H., Weale R. A. Flash bleaching of rhodopsin in the human retina. J Physiol. 1969 Jan;200(1):151–159. doi: 10.1113/jphysiol.1969.sp008686. [DOI] [PMC free article] [PubMed] [Google Scholar]
- STILES W. S. Increment thresholds and the mechanisms of colour vision. Doc Ophthalmol. 1949;3:138–165. doi: 10.1007/BF00162601. [DOI] [PubMed] [Google Scholar]
- Sillman A. J., Ito H., Tomita T. Studies on the mass receptor potential of the isolated frog retina. I. General properties of the response. Vision Res. 1969 Dec;9(12):1435–1442. doi: 10.1016/0042-6989(69)90059-5. [DOI] [PubMed] [Google Scholar]
- Tomita T. Electrophysiological study of the mechanisms subserving color coding in the fish retina. Cold Spring Harb Symp Quant Biol. 1965;30:559–566. doi: 10.1101/sqb.1965.030.01.054. [DOI] [PubMed] [Google Scholar]
- Tomita T., Kaneko A., Murakami M., Pautler E. L. Spectral response curves of single cones in the carp. Vision Res. 1967 Jul;7(7):519–531. doi: 10.1016/0042-6989(67)90061-2. [DOI] [PubMed] [Google Scholar]
- Toyoda J., Hashimoto H., Anno H., Tomita T. The rod response in the frog and studies by intracellular recording. Vision Res. 1970 Nov;10(11):1093–1100. doi: 10.1016/0042-6989(70)90026-x. [DOI] [PubMed] [Google Scholar]
- Toyoda J., Nosaki H., Tomita T. Light-induced resistance changes in single photoreceptors of Necturus and Gekko. Vision Res. 1969 Apr;9(4):453–463. doi: 10.1016/0042-6989(69)90134-5. [DOI] [PubMed] [Google Scholar]
- WALD G. THE RECEPTORS OF HUMAN COLOR VISION. Science. 1964 Sep 4;145(3636):1007–1016. doi: 10.1126/science.145.3636.1007. [DOI] [PubMed] [Google Scholar]
- Weinstein G. W., Hobson R. R., Dowling J. E. Light and dark adaptation in the isolated rat retina. Nature. 1967 Jul 8;215(5097):134–138. doi: 10.1038/215134a0. [DOI] [PubMed] [Google Scholar]
- Werblin F. S. Adaptation in a vertebrate retina: intracellular recording in Necturus. J Neurophysiol. 1971 Mar;34(2):228–241. doi: 10.1152/jn.1971.34.2.228. [DOI] [PubMed] [Google Scholar]
- Werblin F. S., Dowling J. E. Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. J Neurophysiol. 1969 May;32(3):339–355. doi: 10.1152/jn.1969.32.3.339. [DOI] [PubMed] [Google Scholar]
- Witkovsky P. A comparison of ganglion cell and S-potential response properties in carp retina. J Neurophysiol. 1967 May;30(3):546–561. doi: 10.1152/jn.1967.30.3.546. [DOI] [PubMed] [Google Scholar]
- Witkovsky P. The effect of chromatic adaptation on color sensitivity of the carp electroretinogram. Vision Res. 1968 Jul;8(7):823–837. doi: 10.1016/0042-6989(68)90133-8. [DOI] [PubMed] [Google Scholar]
- Witkovsky P. The spectral sensitivity of retinal ganglion cells in the carp. Vision Res. 1965 Dec;5(11):603–614. doi: 10.1016/0042-6989(65)90034-9. [DOI] [PubMed] [Google Scholar]