Abstract
The unidirectional uptake of sodium across the outer surface of the isolated frog skin (J 12 Na) was measured in the presence of transepithelial potential difference (Δψ) ranging from +100 to -100 mV. With a sodium concentration of 115 mM in the bathing solutions J 12 Na increases significantly when the spontaneous Δψ is reduced to zero by short-circuiting the skin. With an Na concentration of 6 mM a progressive increase J 12 Na can be observed when Δψ is decreased in several steps from +100 to -100 mV (serosal side positive and negative, respectively). The observed change J 12 Na amounts to a fraction only of that predicted from the shift in Δψ. The results suggest that under open circuit conditions the potential step across the outside surface is at most one half of Δψ and that the resistance across the outside and inside barrier of the skin is ohmic. This is in agreement with measurements of intracellular potentials in the frog skin and with resistance measurements carried out in the toad skin. The data strongly support the view that the saturating component of J ψ proceeds via a charged carrier system. Exposure to negative values of Δψ of 50 mV or more for times of 24 min or more result in a marked reduction of J 12 Na which shows only partial or no reversibility.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Biber T. U., Chez R. A., Curran P. F. Na transport across frog skin at low external Na concentrations. J Gen Physiol. 1966 Jul;49(6):1161–1176. doi: 10.1085/jgp.0491161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Biber T. U., Curran P. F. Direct measurement of uptake of sodium at the outer surface of the frog skin. J Gen Physiol. 1970 Jul;56(1):83–99. doi: 10.1085/jgp.56.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Biber T. U. Effect of changes in transepithelial transport on the uptake of sodium across the outer surface of the frog skin. J Gen Physiol. 1971 Aug;58(2):131–144. doi: 10.1085/jgp.58.2.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CEREIJIDO M., CURRAN P. F. INTRACELLULAR ELECTRICAL POTENTIALS IN FROG SKIN. J Gen Physiol. 1965 Mar;48:543–557. doi: 10.1085/jgp.48.4.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cereijido M., Rotunno C. A. The effect of antidiuretic hormone on Na movement across frog skin. J Physiol. 1971 Feb;213(1):119–133. doi: 10.1113/jphysiol.1971.sp009372. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dobson J. G., Jr, Kidder G. W., 3rd Edge damage effect in in vitro frog skin preparations. Am J Physiol. 1968 Apr;214(4):719–724. doi: 10.1152/ajplegacy.1968.214.4.719. [DOI] [PubMed] [Google Scholar]
- ENGBAEK L., HOSHIKO T. Electrical potential gradients through frog skin. Acta Physiol Scand. 1957 Jul 1;39(4):348–355. doi: 10.1111/j.1748-1716.1957.tb01433.x. [DOI] [PubMed] [Google Scholar]
- Frizzell R. A., Schultz S. G. Ionic conductances of extracellular shunt pathway in rabbit ileum. Influence of shunt on transmural sodium transport and electrical potential differences. J Gen Physiol. 1972 Mar;59(3):318–346. doi: 10.1085/jgp.59.3.318. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HANSEN H. H., ZERAHN K. CONCENTRATION OF LITHIUM, SODIUM AND POTASSIUM IN EPITHELIAL CELLS OF THE ISOLATED FROG SKIN DURING ACTIVE TRANSPORT OF LITHIUM. Acta Physiol Scand. 1964 Jan-Feb;60:189–196. doi: 10.1111/j.1748-1716.1964.tb02882.x. [DOI] [PubMed] [Google Scholar]
- KOEFOED-JOHNSEN V., USSING H. H. The nature of the frog skin potential. Acta Physiol Scand. 1958 Jun 2;42(3-4):298–308. doi: 10.1111/j.1748-1716.1958.tb01563.x. [DOI] [PubMed] [Google Scholar]
- LINDERHOLM H. Active transport of ions through frog skin with special reference to the action of certain diuretics; a study of the relation between electrical properties, the flux of labelled ions, and respiration. Acta Physiol Scand Suppl. 1952;27(97):1–144. [PubMed] [Google Scholar]
- Lindemann B., Thorns U. Fast potential spike of frog skin generated at the outer surface of the epithelium. Science. 1967 Dec 15;158(3807):1473–1477. doi: 10.1126/science.158.3807.1473. [DOI] [PubMed] [Google Scholar]
- Mandel L. J., Curran P. F. Response of the frog skin to steady-state voltage clamping. I. The shunt pathway. J Gen Physiol. 1972 May;59(5):503–518. doi: 10.1085/jgp.59.5.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rotunno C. A., Vilallonga F. A., Fernández M., Cereijido M. The penetration of sodium into the epithelium of the frog skin. J Gen Physiol. 1970 Jun;55(6):716–735. doi: 10.1085/jgp.55.6.716. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schultz S. G., Curran P. F., Chez R. A., Fuisz R. E. Alanine and sodium fluxes across mucosal border of rabbit ileum. J Gen Physiol. 1967 May;50(5):1241–1260. doi: 10.1085/jgp.50.5.1241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- USSING H. H. RELATIONSHIP BETWEEN OSMOTIC REACTIONS AND ACTIVE SODIUM TRANSPORT IN THE FROG SKIN EPITHELIUM. Acta Physiol Scand. 1965 Jan-Feb;63:141–155. doi: 10.1111/j.1748-1716.1965.tb04052.x. [DOI] [PubMed] [Google Scholar]
- USSING H. H., WINDHAGER E. E. NATURE OF SHUNT PATH AND ACTIVE SODIUM TRANSPORT PATH THROUGH FROG SKIN EPITHELIUM. Acta Physiol Scand. 1964 Aug;61:484–504. [PubMed] [Google Scholar]
- USSING H. H., ZERAHN K. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol Scand. 1951 Aug 25;23(2-3):110–127. doi: 10.1111/j.1748-1716.1951.tb00800.x. [DOI] [PubMed] [Google Scholar]
- Vieira F. L., Caplan S. R., Essig A. Energetics of sodium transport in frog skin. II. The effects of electrical potential on oxygen consumption. J Gen Physiol. 1972 Jan;59(1):77–91. doi: 10.1085/jgp.59.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Voûte C. L., Ussing H. H. Some morphological aspects of active sodium transport. The epithelium of the frog skin. J Cell Biol. 1968 Mar;36(3):625–638. doi: 10.1083/jcb.36.3.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WHITTEMBURY G. ELECTRICAL POTENTIAL PROFILE OF THE TOAD SKIN EPITHELIUM. J Gen Physiol. 1964 Mar;47:795–808. doi: 10.1085/jgp.47.4.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walser M. Components of sodium and chloride flux across toad bladder. Biophys J. 1972 Apr;12(4):351–368. doi: 10.1016/S0006-3495(72)86089-2. [DOI] [PMC free article] [PubMed] [Google Scholar]