Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1973 Jun 1;61(6):709–726. doi: 10.1085/jgp.61.6.709

Further Studies of Sodium Transport in Feline Red Cells

R I Sha'afi 1, E Pascoe 1
PMCID: PMC2203485  PMID: 4733097

Abstract

The transport of radioactive sodium in high sodium cat red blood cells has been studied under various experimental conditions. It was found that iodoacetate (IAA) and iodoacetamide (IAM) inhibit Na influx by 50% whereas NaF has no effect. Reversible dyes, such as methylene blue (Mb), also inhibit this influx by 60%. Both IAA and Mb effects show a lag period of about 40 min. Cell starvation abolishes the volume-dependent Na influx which is generally observed in these cells. IAA reduces significantly the volume-dependent Na influx but does not inhibit it completely. 5 mM magnesium chloride produces a twofold increase in Na influx. On the other hand, MgCl2 has no effect on Na transport in human red cells or on potassium or sulfate transport in cat red cells. The effect of MgCl2 is quite rapid and does not interfere with the volume-dependent Na influx. This effect is abolished in starved cells. Reincubation of previously stored cells in buffered solutions containing glucose and MgCl2 causes more than one order of magnitude increase in Na influx. These several observations are discussed in terms of the possibility of a link between Na transport and Na-Mg-activated ATPase.

Full Text

The Full Text of this article is available as a PDF (972.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BERNSTEIN R. E. Potassium and sodium balance in mammalian red cells. Science. 1954 Sep 17;120(3116):459–460. doi: 10.1126/science.120.3116.459. [DOI] [PubMed] [Google Scholar]
  2. CHAN P. C., CALABRESE V., THEIL L. S. SPECIES DIFFERENCES IN THE EFFECT OF SODIUM AND POTASSIUM IONS ON THE ATPASE OF ERYTHROCYTE MEMBRANES. Biochim Biophys Acta. 1964 Mar 30;79:424–426. [PubMed] [Google Scholar]
  3. Feig S. A., Shohet S. B., Nathan D. G. Energy metabolism in human erythrocytes. I. Effects of sodium fluoride. J Clin Invest. 1971 Aug;50(8):1731–1737. doi: 10.1172/JCI106662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gary-Bobo C. M., Solomon A. K. Properties of hemoglobin solutions in red cells. J Gen Physiol. 1968 Nov;52(5):825–853. doi: 10.1085/jgp.52.5.825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Harrop G. A., Barron E. S. STUDIES ON BLOOD CELL METABOLISM : I. THE EFFECT OF METHYLENE BLUE AND OTHER DYES UPON THE OXYGEN CONSUMPTION OF MAMMALIAN AND AVIAN ERYTHROCYTES. J Exp Med. 1928 Jul 31;48(2):207–223. doi: 10.1084/jem.48.2.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hoffman J. F. The red cell membrane and the transport of sodium and potassium. Am J Med. 1966 Nov;41(5):666–680. doi: 10.1016/0002-9343(66)90029-5. [DOI] [PubMed] [Google Scholar]
  7. Knauf P. A., Rothstein A. Chemical modification of membranes. I. Effects of sulfhydryl and amino reactive reagents on anion and cation permeability of the human red blood cell. J Gen Physiol. 1971 Aug;58(2):190–210. doi: 10.1085/jgp.58.2.190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. OHNISHI T. Extraction of actin- and myosin-like proteins from erythrocyte membrane. J Biochem. 1962 Oct;52:307–308. doi: 10.1093/oxfordjournals.jbchem.a127620. [DOI] [PubMed] [Google Scholar]
  9. Papahadjopoulos D. Studies on the mechanism of action of local anesthetics with phospholipid model membranes. Biochim Biophys Acta. 1972 Apr 18;265(2):169–186. doi: 10.1016/0304-4157(72)90001-9. [DOI] [PubMed] [Google Scholar]
  10. Poznansky M., Solomon A. K. Effect of cell volume on potassium transport in human red cells. Biochim Biophys Acta. 1972 Jul 3;274(1):111–118. doi: 10.1016/0005-2736(72)90286-6. [DOI] [PubMed] [Google Scholar]
  11. ROGERS T. A. The exchange of radioactive magnesium in erythrocytes of several species. J Cell Comp Physiol. 1961 Apr;57:119–121. doi: 10.1002/jcp.1030570209. [DOI] [PubMed] [Google Scholar]
  12. Rich G. T., Sha'afi R. I., Barton T. C., Solomon A. K. Permeability studies on red cell membranes of dog, cat, and beef. J Gen Physiol. 1967 Nov;50(10):2391–2405. doi: 10.1085/jgp.50.10.2391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. SIDEL V. W., SOLOMON A. K. Entrance of water into human red cells under an osmotic pressure gradient. J Gen Physiol. 1957 Nov 20;41(2):243–257. doi: 10.1085/jgp.41.2.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sha'afi R. I., Hajjar J. J. Sodium movement in high sodium feline red cells. J Gen Physiol. 1971 Jun;57(6):684–696. doi: 10.1085/jgp.57.6.684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sha'afi R. I., Lieb W. R. Cation movements in the high sodium erythrocyte of the cat. J Gen Physiol. 1967 Jul;50(6):1751–1764. doi: 10.1085/jgp.50.6.1751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sha'afi R. I., Pascoe E. Sulfate flux in high sodium cat red cells. J Gen Physiol. 1972 Feb;59(2):155–166. doi: 10.1085/jgp.59.2.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. TOSTESON D. C., HOFFMAN J. F. Regulation of cell volume by active cation transport in high and low potassium sheep red cells. J Gen Physiol. 1960 Sep;44:169–194. doi: 10.1085/jgp.44.1.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wright E. M., Diamond J. M. Patterns of non-electrolyte permeability. Proc R Soc Lond B Biol Sci. 1969 Mar 18;171(1028):227–271. doi: 10.1098/rspb.1969.0021. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES