Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1973 Jun 1;61(6):747–766. doi: 10.1085/jgp.61.6.747

Differential Responses of Crab Neuromuscular Synapses to Cesium Ion

H L Atwood 1, Fred Lang 1
PMCID: PMC2203487  PMID: 4350699

Abstract

Excitatory postsynaptic potentials (EPSP's) generated in crab muscle fibers by a single motor axon, differ in amplitude and facilitation. Some EPSP's are large at low frequencies of stimulation and show little facilitation; others are smaller and show pronounced facilitation. When K+ is replaced by Cs+ in the physiological solution, all EPSP's increase in amplitude, but small EPSP's increase proportionately more than large ones. Quantal content of transmission, determined by external recording at single synaptic regions, undergoes a much larger increase at facilitating synapses. The increase in quantal content of transmission is attributable to prolongation of the nerve terminal action potential in Cs+. After 1–2 h of Cs+ treatment, defacilitation of synaptic potentials occurs at synapses which initially showed facilitation. This indicates that Cs+ treatment drastically increases the fraction of the "immediately available" transmitter store released by each nerve impulse, especially at terminals with facilitating synapses. It is proposed that facilitating synapses normally release less of the "immediately available" store of transmitter than poorly facilitating synapses. Possible reasons for this difference in performance are discussed.

Full Text

The Full Text of this article is available as a PDF (1,014.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARAKI T., ITO M., KOSTYUK P. G., OSCARSSON O., OSHIMA T. Injection of alkaline cations into cat spinal motoneurones. Nature. 1962 Dec 29;196:1319–1320. doi: 10.1038/1961319a0. [DOI] [PubMed] [Google Scholar]
  2. Adelman W. J., Jr, Senft J. P. Voltage clamp studies on the effect of internal cesium ion on sodium and potassium currents in the squid giant axon. J Gen Physiol. 1966 Nov;50(2):279–293. doi: 10.1085/jgp.50.2.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Atwood H. L., Bittner G. D. Matching of excitatory and inhibitory inputs to crustacean muscle fibers. J Neurophysiol. 1971 Jan;34(1):157–170. doi: 10.1152/jn.1971.34.1.157. [DOI] [PubMed] [Google Scholar]
  4. Atwood H. L. Excitation and inhibition in crab muscle fibres. Comp Biochem Physiol. 1965 Dec;16(4):409–426. doi: 10.1016/0010-406x(65)90306-3. [DOI] [PubMed] [Google Scholar]
  5. Atwood H. L., Hoyle G., Smyth T., Jr Mechanical and electrical responses of single innervated crab-muscle fibres. J Physiol. 1965 Oct;180(3):449–482. doi: 10.1113/jphysiol.1965.sp007712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. BAKER P. F., HODGKIN A. L., SHAW T. I. The effects of changes in internal ionic concentrations on the electrical properties of perfused giant axons. J Physiol. 1962 Nov;164:355–374. doi: 10.1113/jphysiol.1962.sp007026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bittner G. D. Differentiation of nerve terminals in the crayfish opener muscle and its functional significance. J Gen Physiol. 1968 Jun;51(6):731–758. doi: 10.1085/jgp.51.6.731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bittner G. D., Kennedy D. Quantitative aspects of transmitter release. J Cell Biol. 1970 Dec;47(3):585–592. doi: 10.1083/jcb.47.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. DUDEL J., KUFFLER S. W. Presynaptic inhibition at the crayfish neuromuscular junction. J Physiol. 1961 Mar;155:543–562. doi: 10.1113/jphysiol.1961.sp006646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. DUDEL J. POTENTIAL CHANGES IN THE CRAYFISH MOTOR NERVE TERMINAL DURING REPETITIVE STIMULATION. Pflugers Arch Gesamte Physiol Menschen Tiere. 1965 Jan 11;282:323–337. doi: 10.1007/BF00412507. [DOI] [PubMed] [Google Scholar]
  11. DUDEL J. PRESYNAPTIC INHIBITION OF THE EXCITATORY NERVE TERMINAL IN THE NEUROMUSCULAR JUNCTION OF THE CRAYFISH. Pflugers Arch Gesamte Physiol Menschen Tiere. 1963 Sep 9;277:537–557. [PubMed] [Google Scholar]
  12. Ginsborg B. L., Hamilton J. T. The effect of caesium ions of neuromuscular transmission in the frog. Q J Exp Physiol Cogn Med Sci. 1968 Apr;53(2):162–169. doi: 10.1113/expphysiol.1968.sp001955. [DOI] [PubMed] [Google Scholar]
  13. Holtzman E., Freeman A. R., Kashner L. A. Stimulation-dependent alterations in peroxidase uptake at lobster neuromuscular junctions. Science. 1971 Aug 20;173(3998):733–736. doi: 10.1126/science.173.3998.733. [DOI] [PubMed] [Google Scholar]
  14. Johnson E. W., Wernig A. The binomial nature of transmitter release at the crayfish neuromuscular junction. J Physiol. 1971 Nov;218(3):757–767. doi: 10.1113/jphysiol.1971.sp009642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. KATZ B., MILEDI R. PROPAGATION OF ELECTRIC ACTIVITY IN MOTOR NERVE TERMINALS. Proc R Soc Lond B Biol Sci. 1965 Feb 16;161:453–482. doi: 10.1098/rspb.1965.0015. [DOI] [PubMed] [Google Scholar]
  16. KATZ B., THESLEFF S. On the factors which determine the amplitude of the miniature end-plate potential. J Physiol. 1957 Jul 11;137(2):267–278. doi: 10.1113/jphysiol.1957.sp005811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Katz B., Miledi R. Tetrodotoxin-resistant electric activity in presynaptic terminals. J Physiol. 1969 Aug;203(2):459–487. doi: 10.1113/jphysiol.1969.sp008875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Katz B., Miledi R. The role of calcium in neuromuscular facilitation. J Physiol. 1968 Mar;195(2):481–492. doi: 10.1113/jphysiol.1968.sp008469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mallart A., Martin A. R. The relation between quantum content and facilitation at the neuromuscular junction of the frog. J Physiol. 1968 Jun;196(3):593–604. doi: 10.1113/jphysiol.1968.sp008525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. PICKARD W. F., LETTVIN J. Y., MOORE J. W., TAKATA M., POOLER J., BERNSTEIN T. CAESUM IONS DO NOT PASS THE MEMBRANE OF THE GIANT AXON. Proc Natl Acad Sci U S A. 1964 Nov;52:1177–1183. doi: 10.1073/pnas.52.5.1177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sherman R. G., Atwood H. L. Correlated electrophysiological and ultrastructural studies of a crustacean motor unit. J Gen Physiol. 1972 May;59(5):586–615. doi: 10.1085/jgp.59.5.586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sjodin R. A. Long duration responses in squid giant axons injected with 134cesium sulfate solutions. J Gen Physiol. 1966 Nov;50(2):269–278. doi: 10.1085/jgp.50.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. TAKEUCHI A., TAKEUCHI N. THE EFFECT ON CRAYFISH MUSCLE OF IONTOPHORETICALLY APPLIED GLUTAMATE. J Physiol. 1964 Mar;170:296–317. doi: 10.1113/jphysiol.1964.sp007332. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES