Abstract
The temperature dependence of permeation across human red cell membranes has been determined for a series of hydrophilic and lipophilic solutes, including urea and two methyl substituted derivatives, all the straight-chain amides from formamide through valeramide and the two isomers, isobutyramide and isovaleramide. The temperature coefficient for permeation by all the hydrophilic solutes is 12 kcal mol-1 or less, whereas that for all the lipophilic solutes is 19 kcal mol-1 or greater. This difference is consonant with the view that hydrophilic molecules cross the membrane by a path different from that taken by the lipophilic ones. The thermodynamic parameters associated with lipophile permeation have been studied in detail. ΔG is negative for adsorption of lipophilic amides onto an oil-water interface, whereas it is positive for transfer of the polar head from the aqueous medium to bulk lipid solvent. Application of absolute reaction rate theory makes it possible to make a clear distinction between diffusion across the water-red cell membrane interface and diffusion within the membrane. Diffusion coefficients and apparent activation enthalpies and entropies have been computed for each process. Transfer of the polar head from the solvent into the interface is characterized by ΔG ‡ = 0 kcal mol-1 and ΔS ‡ negative, whereas both of these parameters have large positive values for diffusion within the membrane. Diffusion within the membrane is similar to what is expected for diffusion through a highly associated viscous fluid.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cone R. A. Rotational diffusion of rhodopsin in the visual receptor membrane. Nat New Biol. 1972 Mar 15;236(63):39–43. doi: 10.1038/newbio236039a0. [DOI] [PubMed] [Google Scholar]
- Dalmark M., Wieth J. O. Temperature dependence of chloride, bromide, iodide, thiocyanate and salicylate transport in human red cells. J Physiol. 1972 Aug;224(3):583–610. doi: 10.1113/jphysiol.1972.sp009914. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Gier J., Mandersloot J. G., Hupkes J. V., McElhaney R. N., Van Beek W. P. On the mechanism of non-electrolyte permeation through lipid bilayers and through biomembranes. Biochim Biophys Acta. 1971 Jun 1;233(3):610–618. doi: 10.1016/0005-2736(71)90160-x. [DOI] [PubMed] [Google Scholar]
- Diamond J. M., Wright E. M. Biological membranes: the physical basis of ion and nonelectrolyte selectivity. Annu Rev Physiol. 1969;31:581–646. doi: 10.1146/annurev.ph.31.030169.003053. [DOI] [PubMed] [Google Scholar]
- Diamond J. M., Wright E. M. Molecular forces governing non-electrolyte permeation through cell membranes. Proc R Soc Lond B Biol Sci. 1969 Mar 18;171(1028):273–316. doi: 10.1098/rspb.1969.0022. [DOI] [PubMed] [Google Scholar]
- Frye L. D., Edidin M. The rapid intermixing of cell surface antigens after formation of mouse-human heterokaryons. J Cell Sci. 1970 Sep;7(2):319–335. doi: 10.1242/jcs.7.2.319. [DOI] [PubMed] [Google Scholar]
- GREEN J. W. The relative rate of penetration of the lower saturated monocarboxylic acids into mammalian erythrocytes. J Cell Physiol. 1949 Apr;33(2):247–266. doi: 10.1002/jcp.1030330208. [DOI] [PubMed] [Google Scholar]
- Johnson S. M., Bangham A. D. The action of anaesthetics on phospholipid membranes. Biochim Biophys Acta. 1969 Oct 14;193(1):92–104. doi: 10.1016/0005-2736(69)90062-5. [DOI] [PubMed] [Google Scholar]
- Rudy B., Gitler C. Microviscosity of the cell membrane. Biochim Biophys Acta. 1972 Oct 23;288(1):231–236. doi: 10.1016/0005-2736(72)90242-8. [DOI] [PubMed] [Google Scholar]
- Sha'afi R. I., Gary-Bobo C. M., Solomon A. K. Permeability of red cell membranes to small hydrophilic and lipophilic solutes. J Gen Physiol. 1971 Sep;58(3):238–258. doi: 10.1085/jgp.58.3.238. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sha'afi R. I., Rich G. T., Mikulecky D. C., Solomon A. K. Determination of urea permeability in red cells by minimum method. A test of the phenomenological equations. J Gen Physiol. 1970 Apr;55(4):427–450. doi: 10.1085/jgp.55.4.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sha'afi R. I., Rich G. T., Sidel V. W., Bossert W., Solomon A. K. The effect of the unstirred layer on human red cell water permeability. J Gen Physiol. 1967 May;50(5):1377–1399. doi: 10.1085/jgp.50.5.1377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vieira F. L., Sha'afi R. I., Solomon A. K. The state of water in human and dog red cell membranes. J Gen Physiol. 1970 Apr;55(4):451–466. doi: 10.1085/jgp.55.4.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang J., Rich G. T., Galey W. R., Solomon A. K. Relation between adsorption at an oil/water interface and membrane permeability. Biochim Biophys Acta. 1972 Feb 11;255(2):691–695. doi: 10.1016/0005-2736(72)90173-3. [DOI] [PubMed] [Google Scholar]