Abstract
Passive electrical properties (internal conductance, membrane conductance, low frequency capacity, and high frequency capacity obtained from the foot of the action potential) of normal and glycerol-treated muscle of Xenopus were determined with the intracellular microelectrode technique. The results show that the electrical properties of Xenopus muscle are essentially the same as those of frog muscle. Characteristics of the action potential of Xenopus muscle were also similar to those of frog muscle. Twitch tension of glycerol-treated muscle fibers of Xenopus recovered partially when left in normal Ringer for a long time (more than 6 h). Along with the twitch recovery, the membrane capacity increased. Single isolated muscle fibers of Xenopus were subjected to the double sucrose-gap technique. Action potentials under the sucrose gap were not very different from those obtained with the intracellular electrode, except for the sucrose-gap hyperpolarization and a slight tendency toward prolongation of the shape of action potential. Twitch contraction of the artificial node was recorded as a change of force from one end of the fiber under the sucrose gap. From the time-course of the recorded force and the sinusoidal stress-strain relationship at varying frequencies of the resting muscle fiber, the time-course of isotonic shortening of the node was recovered by using Fourier analysis. It was revealed that the recorded twitch force can approximately be regarded as isotonic shortening of the node.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adrian R. H., Chandler W. K., Hodgkin A. L. The kinetics of mechanical activation in frog muscle. J Physiol. 1969 Sep;204(1):207–230. doi: 10.1113/jphysiol.1969.sp008909. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Adrian R. H., Chandler W. K., Hodgkin A. L. Voltage clamp experiments in striated muscle fibres. J Physiol. 1970 Jul;208(3):607–644. doi: 10.1113/jphysiol.1970.sp009139. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bastian J., Nakajima S. Action potential in the transverse tubules and its role in the activation of skeletal muscle. J Gen Physiol. 1974 Feb;63(2):257–278. doi: 10.1085/jgp.63.2.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beeler G. W., Jr, Reuter H. The relation between membrane potential, membrane currents and activation of contraction in ventricular myocardial fibres. J Physiol. 1970 Mar;207(1):211–229. doi: 10.1113/jphysiol.1970.sp009057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blaustein M. P., Goldman D. E. Origin of axon membrane hyperpolarization under sucrose-gap. Biophys J. 2008 Dec 31;6(4):453–470. doi: 10.1016/S0006-3495(66)86669-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FALK G., FATT P. LINEAR ELECTRICAL PROPERTIES OF STRIATED MUSCLE FIBRES OBSERVED WITH INTRACELLULAR ELECTRODES. Proc R Soc Lond B Biol Sci. 1964 Apr 14;160:69–123. doi: 10.1098/rspb.1964.0030. [DOI] [PubMed] [Google Scholar]
- Fenn W. O., Marsh B. S. Muscular force at different speeds of shortening. J Physiol. 1935 Nov 22;85(3):277–297. doi: 10.1113/jphysiol.1935.sp003318. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gage P. W., Eisenberg R. S. Capacitance of the surface and transverse tubular membrane of frog sartorius muscle fibers. J Gen Physiol. 1969 Mar;53(3):265–278. doi: 10.1085/jgp.53.3.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hodgkin A. L., Nakajima S. Analysis of the membrane capacity in frog muscle. J Physiol. 1972 Feb;221(1):121–136. doi: 10.1113/jphysiol.1972.sp009743. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hodgkin A. L., Nakajima S. The effect of diameter on the electrical constants of frog skeletal muscle fibres. J Physiol. 1972 Feb;221(1):105–120. doi: 10.1113/jphysiol.1972.sp009742. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ildefonse M., Rougier O. Voltage-clamp analysis of the early current in frog skeletal muscle fibre using the double sucrose-gap method. J Physiol. 1972 Apr;222(2):373–395. doi: 10.1113/jphysiol.1972.sp009803. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JULIAN F. J., MOORE J. W., GOLDMAN D. E. Membrane potentials of the lobster giant axon obtained by use of the sucrose-gap technique. J Gen Physiol. 1962 Jul;45:1195–1216. doi: 10.1085/jgp.45.6.1195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jirounek P., Straub R. W. The potential distribution and the short-circuiting factor in the sucrose gap. Biophys J. 1971 Jan;11(1):1–10. doi: 10.1016/S0006-3495(71)86191-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krolenko S. A. Changes in the T-system of muscle fibres under the influence of influx and efflux of glycerol. Nature. 1969 Mar 8;221(5184):966–968. doi: 10.1038/221966a0. [DOI] [PubMed] [Google Scholar]
- Krolenko S. A., Fedorov V. V. Recovery of osometric twitches after glycerol removal. Experientia. 1972 Apr 15;28(4):424–425. doi: 10.1007/BF02008317. [DOI] [PubMed] [Google Scholar]
- Moore L. E. Voltage clamp experiments of single muscle fibers of Rana pipiens. J Gen Physiol. 1972 Jul;60(1):1–19. doi: 10.1085/jgp.60.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morad M., Orkand R. K. Excitation-concentration coupling in frog ventricle: evidence from voltage clamp studies. J Physiol. 1971 Dec;219(1):167–189. doi: 10.1113/jphysiol.1971.sp009656. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakajima S., Nakajima Y., Peachey L. D. Speed of repolarization and morphology of glygerol-treated frog muscle fibres. J Physiol. 1973 Oct;234(2):465–480. doi: 10.1113/jphysiol.1973.sp010355. [DOI] [PMC free article] [PubMed] [Google Scholar]
- New W., Trautwein W. The ionic nature of slow inward current and its relation to contraction. Pflugers Arch. 1972;334(1):24–38. doi: 10.1007/BF00585998. [DOI] [PubMed] [Google Scholar]
- Pooler J. P., Oxford G. S. Low membrane resistance in sucrose gap--a parallel leakage path. Biochim Biophys Acta. 1972 Feb 11;255(2):681–684. doi: 10.1016/0005-2736(72)90171-x. [DOI] [PubMed] [Google Scholar]
- Schneider M. F. Linear electrical properties of the transverse tubules and surface membrane of skeletal muscle fibers. J Gen Physiol. 1970 Nov;56(5):640–671. doi: 10.1085/jgp.56.5.640. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vassort G., Rougier O. Membrane potential and slow inward current dependence of frog cardiac mechanical activity. Pflugers Arch. 1972;331(3):191–203. doi: 10.1007/BF00589126. [DOI] [PubMed] [Google Scholar]
- Zachar J., Zacharova D., Adrian R. H. Observations on "detubulated" muscle fibres. Nat New Biol. 1972 Oct 4;239(92):153–155. doi: 10.1038/newbio239153a0. [DOI] [PubMed] [Google Scholar]