Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1974 Mar 1;63(3):324–336. doi: 10.1085/jgp.63.3.324

Electrophoretic Separation of Different Phophosproteins Associated with Ca-ATPase and Na,K-ATPase in Human Red Cell Ghosts

Philip A Knauf 1, Fulgencio Proverbio 1, Joseph F Hoffman 1
PMCID: PMC2203554  PMID: 4274060

Abstract

Ca has been found to increase the quantity of 32P incorporated into red cell ghosts from [γ-32P]ATP over the levels obtained by incubation with Mg alone or with Mg + Na, in correlation with the effect of Ca on the associated ATPase activities. When the 32P-labeled ghosts were solubilized in sodium dodecyl sulfate (SDS) and electrophoresed on acrylamide gels only two bands could be detected either by autoradiography or by counting the sliced gels. The faster moving band (P-2) had the same mobility and the same molecular weight (103,000) as the phosphoprotein found either with Mg alone or with Mg + Na. The slower moving band (P-1) was not found in extensively washed ghosts labeled in the absence of Ca. The molecular weight of P-1 is approximately 150,000. P-1 like P-2 was not affected by pretreatment of intact cells with Pronase before labeling indicating that neither the phosphorylating mechanism nor the phosphoprotein are accessible to externally applied Pronase. The demonstration that a Ca-phosphoprotein is separable from the Na-stimulated phosphoprotein suggests that the Ca-ATPase is distinct from and independent of the Na,K-ATPase. The fact that Ca blocks the dephosphorylation by K of the Na-phosphoprotein indicates that caution is required in interpreting results when the activities of the different phosphoproteins have not been separately determined.

Full Text

The Full Text of this article is available as a PDF (727.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avruch J., Fairbanks G. Demonstration of a phosphopeptide intermediate in the Mg ++ -dependent, Na + - and K + -stimulated adenosine triphosphatase reaction of the erythrocyte membrane. Proc Natl Acad Sci U S A. 1972 May;69(5):1216–1220. doi: 10.1073/pnas.69.5.1216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blostein R. Evidence for a phosphorylated intermediate of red-cell membrane adenosine triphosphatase. Biochem Biophys Res Commun. 1966 Sep 8;24(5):598–602. doi: 10.1016/0006-291x(66)90364-0. [DOI] [PubMed] [Google Scholar]
  3. Blostein R. Relationships between erythrocyte membrane phosphorylation and adenosine triphosphate hydrolysis. J Biol Chem. 1968 Apr 25;243(8):1957–1965. [PubMed] [Google Scholar]
  4. Blostein R. Sodium-activated adenosine triphosphatase activity of the erythrocyte membrane. J Biol Chem. 1970 Jan 25;245(2):270–275. [PubMed] [Google Scholar]
  5. Blum R. M., Hoffman J. F. Ca-induced K transport in human red cells: localization of the Ca-sensitive site to the inside of the membrane. Biochem Biophys Res Commun. 1972 Feb 16;46(3):1146–1152. doi: 10.1016/s0006-291x(72)80094-9. [DOI] [PubMed] [Google Scholar]
  6. Bond G. H., Green J. W. Effects of monovalent cations on the (Mg 2+ + Ca 2+ )-dependent ATPase of the red cell membrane. Biochim Biophys Acta. 1971 Aug 13;241(2):393–398. doi: 10.1016/0005-2736(71)90038-1. [DOI] [PubMed] [Google Scholar]
  7. DUNHAM E. T., GLYNN I. M. Adenosinetriphosphatase activity and the active movements of alkali metal ions. J Physiol. 1961 Apr;156:274–293. doi: 10.1113/jphysiol.1961.sp006675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Epstein F. H., Whittam R. The mode of inhibition by calcium of cell-membrane adenosine-triphosphatase activity. Biochem J. 1966 Apr;99(1):232–238. doi: 10.1042/bj0990232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hoffman J. F. The red cell membrane and the transport of sodium and potassium. Am J Med. 1966 Nov;41(5):666–680. doi: 10.1016/0002-9343(66)90029-5. [DOI] [PubMed] [Google Scholar]
  10. Inesi G., Maring E., Murphy A. J., McFarland B. H. A study of the phosphorylated intermediate of sarcoplasmic reticulum ATPase. Arch Biochem Biophys. 1970 May;138(1):285–294. doi: 10.1016/0003-9861(70)90309-7. [DOI] [PubMed] [Google Scholar]
  11. Knauf P. A., Proverbio F., Hoffman J. F. Chemical characterization and pronase susceptibility of the Na:K pump-associated phosphoprotein of human red blood cells. J Gen Physiol. 1974 Mar;63(3):305–323. doi: 10.1085/jgp.63.3.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kregenow F. M., Hoffman J. F. Some kinetic and metabolic characteristics of calcium-induced potassium transport in human red cells. J Gen Physiol. 1972 Oct;60(4):406–429. doi: 10.1085/jgp.60.4.406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. MacLennan D. H., Seeman P., Iles G. H., Yip C. C. Membrane formation by the adenosine triphosphatase of sarcoplasmic reticulum. J Biol Chem. 1971 Apr 25;246(8):2702–2710. [PubMed] [Google Scholar]
  14. Makinose M. The phosphorylation of the membranal protein of the sarcoplasmic vesicles during active calcium transport. Eur J Biochem. 1969 Aug;10(1):74–82. [PubMed] [Google Scholar]
  15. Martonosi A. Sarcoplasmic reticulum. VII. Properties of a phosphoprotein intermediate implicated in calcium transport. J Biol Chem. 1969 Feb 25;244(4):613–620. [PubMed] [Google Scholar]
  16. Olson E. J., Cazort R. J. Active calcium and strontium transport in human erythrocyte ghosts. J Gen Physiol. 1969 Mar;53(3):311–322. doi: 10.1085/jgp.53.3.311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Reid M. S., Bieleski R. L. A simple apparatus for vertical flat-sheet polyacrylamide gel electrophoresis. Anal Biochem. 1968 Mar;22(3):374–381. doi: 10.1016/0003-2697(68)90278-9. [DOI] [PubMed] [Google Scholar]
  18. Romero P. J., Whittam R. The control by internal calcium of membrane permeability to sodium and potassium. J Physiol. 1971 May;214(3):481–507. doi: 10.1113/jphysiol.1971.sp009445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schatzmann H. J. ATP-dependent Ca++-extrusion from human red cells. Experientia. 1966 Jun 15;22(6):364–365. doi: 10.1007/BF01901136. [DOI] [PubMed] [Google Scholar]
  20. Schatzmann H. J., Rossi G. L. (Ca 2+ + Mg 2+ )-activated membrane ATPases in human red cells and their possible relations to cation transport. Biochim Biophys Acta. 1971 Aug 13;241(2):379–392. doi: 10.1016/0005-2736(71)90037-x. [DOI] [PubMed] [Google Scholar]
  21. Schatzmann H. J., Vincenzi F. F. Calcium movements across the membrane of human red cells. J Physiol. 1969 Apr;201(2):369–395. doi: 10.1113/jphysiol.1969.sp008761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Weiner M. L., Lee K. S. Active calcium ion uptake by inside-out and right side-out vesicles of red blood cell membranes. J Gen Physiol. 1972 Apr;59(4):462–475. doi: 10.1085/jgp.59.4.462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Yamamoto T., Tonomura Y. Reaction mechanism of the Ca++ -dependent ATPase of sarcoplasmic reticulum from skeletal muscle. I. Kinetic studies. J Biochem. 1967 Nov;62(5):558–575. doi: 10.1093/oxfordjournals.jbchem.a128706. [DOI] [PubMed] [Google Scholar]
  24. Yamamoto T., Tonomura Y. Reaction mechanism of the Ca++ -dependent ATPase of sarcoplasmic reticulum from skeletal muscle. II. Intermediate formation of phosphoryl protein. J Biochem. 1968 Aug;64(2):137–145. doi: 10.1093/oxfordjournals.jbchem.a128873. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES