Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1974 May 1;63(5):590–600. doi: 10.1085/jgp.63.5.590

Investigation of the Accompaniment of Calcium During Active Calcium Transport from Human Erythrocyte Ghosts

Erik J Olson 1, Ralph J Cazort 1
PMCID: PMC2203563  PMID: 4363379

Abstract

To determine whether a cell metabolite was involved in active calcium transport, the cell contents of human erythrocytes were subjected to high dilutions and the resultant ghosts were checked for their ability to actively transport calcium. It was found that the diluted erythrocyte ghosts did retain their capacity to actively transport calcium and that the characteristics of this transport process appeared to be unaltered by the high dilutions. Calcium analysis of the cell membrane and cell supernatant indicated that almost all of the calcium was lost from the cell solution rather than the cell membrane as active calcium transport proceeded. Therefore it appeared that calcium was able to cross the cell membrane without the aid of a cell metabolite. Investigations with layered erythrocytes indicated that the active transport of calcium was not assisted by centrifugation. Neither inorganic phosphate, pyrophosphate, nor an adenine nucleotide appeared to accompany calcium across the membrane as indicated by total phosphate and inorganic phosphate analysis and 260-nm readings of the deproteinized supernatant.

Full Text

The Full Text of this article is available as a PDF (570.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BAKER P. F. AN EFFLUX OF NINHYDRIN-POSITIVE MATERIAL ASSOCIATED WITH THE OPERATION OF THE NA+ PUMP IN INTACT CRAB NERVE IMMERSED IN NA+-FREE SOLUTIONS. Biochim Biophys Acta. 1964 Sep 25;88:458–460. doi: 10.1016/0926-6577(64)90208-6. [DOI] [PubMed] [Google Scholar]
  2. Buckley J. T., Hawthorne J. N. Erythrocyte membrane polyphosphoinositide metabolism and the regulation of calcium binding. J Biol Chem. 1972 Nov 25;247(22):7218–7223. [PubMed] [Google Scholar]
  3. Cha Y. N., Shin B. C., Lee K. S. Active uptake of Ca++ and Ca plus,plus-activated Mg++ ATPase in red cell membrane fragments. J Gen Physiol. 1971 Feb;57(2):202–215. doi: 10.1085/jgp.57.2.202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Forstner J., Manery J. F. Calcium binding by human erythrocyte membranes. Biochem J. 1971 Sep;124(3):563–571. doi: 10.1042/bj1240563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Lee K. S., Shin B. C. Studies on the active transport of calcium in human red cells. J Gen Physiol. 1969 Dec;54(6):713–729. doi: 10.1085/jgp.54.6.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Long C., Mouat B. The binding of calcium ions by erythrocytes and 'ghost' -cell membranes. Biochem J. 1971 Aug;123(5):829–836. doi: 10.1042/bj1230829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. MacLennan D. H., Wong P. T. Isolation of a calcium-sequestering protein from sarcoplasmic reticulum. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1231–1235. doi: 10.1073/pnas.68.6.1231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Olson E. J., Cazort R. J. Active calcium and strontium transport in human erythrocyte ghosts. J Gen Physiol. 1969 Mar;53(3):311–322. doi: 10.1085/jgp.53.3.311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. RUMMEL W., SEIFEN E., BALDAUF J. Influence of calcium and ouabain upon the potassium influx in human erythrocytes. Biochem Pharmacol. 1963 Jun;12:557–563. doi: 10.1016/0006-2952(63)90131-x. [DOI] [PubMed] [Google Scholar]
  10. Reuter H., Seitz N. The dependence of calcium efflux from cardiac muscle on temperature and external ion composition. J Physiol. 1968 Mar;195(2):451–470. doi: 10.1113/jphysiol.1968.sp008467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Romero P. J., Whittam R. The control by internal calcium of membrane permeability to sodium and potassium. J Physiol. 1971 May;214(3):481–507. doi: 10.1113/jphysiol.1971.sp009445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Schatzmann H. J. ATP-dependent Ca++-extrusion from human red cells. Experientia. 1966 Jun 15;22(6):364–365. doi: 10.1007/BF01901136. [DOI] [PubMed] [Google Scholar]
  13. Schatzmann H. J., Vincenzi F. F. Calcium movements across the membrane of human red cells. J Physiol. 1969 Apr;201(2):369–395. doi: 10.1113/jphysiol.1969.sp008761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Trudeau D. L., Freier E. F. Determination of calcium in urine and serum by atomic absorption spectrophotometry (AAS). Clin Chem. 1967 Feb;13(2):101–114. [PubMed] [Google Scholar]
  15. Weiner M. L., Lee K. S. Active calcium ion uptake by inside-out and right side-out vesicles of red blood cell membranes. J Gen Physiol. 1972 Apr;59(4):462–475. doi: 10.1085/jgp.59.4.462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Wins P., Schoffeniels E. Studies on red-cell ghost ATPase systems: properties of a (Mg2+ + Ca2+)-dependent ATPase. Biochim Biophys Acta. 1966 Jul 13;120(3):341–350. doi: 10.1016/0926-6585(66)90301-3. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES