Abstract
Our previous studies on solute drag on frog skin and synthetic heteropore membranes have been extended to a synthetic homopore membrane. The 150-Å radius pores of this membrane are formed by irradiation and etching of polycarbonate films. The membrane is 6-µm thick and it has 6 x 108 pores cm–2. In this study, sucrose has been used as the driver solute with bulk flow blocked by hydrostatic pressure. As before on heteroporous membranes, the transmembrane asymmetry of tracer solute is dependent on the concentration of the driver solute. Tracer sucrose shows no solute drag while maltotriose shows appreciable solute drag at 1.5 M sucrose. With tracer inulin and dextran, solute drag is detectable at 0.5 M sucrose. These results are in keeping with the previous findings on heteropore membranes. Transmembrane solute drag is the result of kinetic and frictional interaction of the driver and tracer solutes as the driver flows down its concentration gradient. The magnitude of the tracer flux asymmetry is also dependent on the size of the transmembrane pores.
Full Text
The Full Text of this article is available as a PDF (1.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beck R. E., Schultz J. S. Hindrance of solute diffusion within membranes as measured with microporous membranes of known pore geometry. Biochim Biophys Acta. 1972 Jan 17;255(1):273–303. doi: 10.1016/0005-2736(72)90028-4. [DOI] [PubMed] [Google Scholar]
- Biber T. U., Curran P. F. Coupled solute fluxes in toad skin. J Gen Physiol. 1968 May;51(5):606–620. doi: 10.1085/jgp.51.5.606. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Curran P. F., Taylor A. E., Solomon A. K. Tracer diffusion and unidirectional fluxes. Biophys J. 2008 Dec 31;7(6):879–901. doi: 10.1016/S0006-3495(67)86627-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Franz T. J., Galey W. R., Van Bruggen J. T. Further observations on asymmetrical solute movement across membranes. J Gen Physiol. 1968 Jan;51(1):1–12. doi: 10.1085/jgp.51.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Franz T. J., Van Bruggen J. T. A possible mechanism of action of DMSO. Ann N Y Acad Sci. 1967 Mar 15;141(1):302–309. doi: 10.1111/j.1749-6632.1967.tb34895.x. [DOI] [PubMed] [Google Scholar]
- Franz T. J., Van Bruggen J. T. Hyperosmolarity and the net transport of nonelectrolytes in frog skin. J Gen Physiol. 1967 Mar;50(4):933–949. doi: 10.1085/jgp.50.4.933. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GINZBURG B. Z., KATCHALSKY A. THE FRICTIONAL COEFFICIENTS OF THE FLOWS OF NON-ELECTROLYTES THROUGH ARTIFICIAL MEMBRANES. J Gen Physiol. 1963 Nov;47:403–418. doi: 10.1085/jgp.47.2.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GOLDSTEIN D. A., SOLOMON A. K. Determination of equivalent pore radius for human red cells by osmotic pressure measurement. J Gen Physiol. 1960 Sep;44:1–17. doi: 10.1085/jgp.44.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galey W. R., Van Bruggen J. T. The coupling of solute fluxes in membranes. J Gen Physiol. 1970 Feb;55(2):220–242. doi: 10.1085/jgp.55.2.220. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoshiko T., Lindley B. D. Phenomenological description of active transport of salt and water. J Gen Physiol. 1967 Jan;50(3):729–758. doi: 10.1085/jgp.50.3.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KEDEM O., KATCHALSKY A. A physical interpretation of the phenomenological coefficients of membrane permeability. J Gen Physiol. 1961 Sep;45:143–179. doi: 10.1085/jgp.45.1.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KEDEM O., KATCHALSKY A. Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim Biophys Acta. 1958 Feb;27(2):229–246. doi: 10.1016/0006-3002(58)90330-5. [DOI] [PubMed] [Google Scholar]
- Kedem O., Essig A. Isotope flows and flux ratios in biological membranes. J Gen Physiol. 1965 Jul;48(6):1047–1070. doi: 10.1085/jgp.48.6.1047. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lief P. D., Essig A. Urea transport in the toad bladder; coupling of urea flows. J Membr Biol. 1973;12(2):159–176. doi: 10.1007/BF01869997. [DOI] [PubMed] [Google Scholar]
- PAGANELLI C. V., SOLOMON A. K. The rate of exchange of tritiated water across the human red cell membrane. J Gen Physiol. 1957 Nov 20;41(2):259–277. doi: 10.1085/jgp.41.2.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patlak C. S., Rapoport S. I. Theoretical analysis of net tracer flux due to volume circulation in a membrane with pores of different sizes. Relation to solute drag model. J Gen Physiol. 1971 Feb;57(2):113–124. doi: 10.1085/jgp.57.2.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quinn J. A., Anderson J. L., Ho W. S., Petzny W. J. Model pores of molecular dimension. The preparation and characterization of track-etched membranes. Biophys J. 1972 Aug;12(8):990–1007. doi: 10.1016/S0006-3495(72)86139-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stender S., Kristensen K., Skadhauge E. Solvent drag by solute-linked water flow. A theoretical examination. J Membr Biol. 1973;11(4):377–398. doi: 10.1007/BF01869831. [DOI] [PubMed] [Google Scholar]
- Ussing H. H. Anomalous transport of electrolytes and sucrose through the isolated frog skin induced by hypertonicity of the outside bathing solution. Ann N Y Acad Sci. 1966 Jul 14;137(2):543–555. doi: 10.1111/j.1749-6632.1966.tb50180.x. [DOI] [PubMed] [Google Scholar]
- Ussing H. H., Johansen B. Anomalous transport of sucrose and urea in toad skin. Nephron. 1969;6(3):317–328. doi: 10.1159/000179736. [DOI] [PubMed] [Google Scholar]
