Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1963 Sep;50(3):474–481. doi: 10.1073/pnas.50.3.474

THE ROLE OF SODIUM IONS IN THE ACTIVATION OF ELECTROPHORUS ELECTRIC ORGAN ADENOSINE TRIPHOSPHATASE

R W Albers 1, S Fahn 1, G J Koval 1
PMCID: PMC221204  PMID: 14067092

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALBERS R. W., KOVAL G. J. Properties of the sodium-dependent ATPase of Electrophorus electricus. Life Sci. 1962 May;1:219–222. doi: 10.1016/0024-3205(62)90022-x. [DOI] [PubMed] [Google Scholar]
  2. COOK G. M., HEARD D. H., SEAMAN G. V. A sialomucopeptide liberated by trypsin from the human erythrocyte. Nature. 1960 Dec 17;188:1011–1012. doi: 10.1038/1881011a0. [DOI] [PubMed] [Google Scholar]
  3. EISENMAN G. Cation selective glass electrodes and their mode of operation. Biophys J. 1962 Mar;2(2 Pt 2):259–323. doi: 10.1016/s0006-3495(62)86959-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. EYLAR E. H., MADOFF M. A., BRODY O. V., ONCLEY J. L. The contribution of sialic acid to the surface charge of the erythrocyte. J Biol Chem. 1962 Jun;237:1992–2000. [PubMed] [Google Scholar]
  5. HOKIN L. E., HOKIN M. R. Studies on the carrier function of phosphatidic acid in sodium transport. I. The turnover of phosphatidic acid and phosphoinositide in the avian salt gland on stimulation of secretion. J Gen Physiol. 1960 Sep;44:61–85. doi: 10.1085/jgp.44.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. KARPMAN V. L., ABRIKOSOVA M. A., GLEZER G. A. Hydrodynamic mechanisms of arterial pressure rise in hypertensive disease. Fed Proc. 1963 Mar-Apr;Suppl 22:212–215. [PubMed] [Google Scholar]
  7. LEAF A., PAGE L. B., ANDERSON J. Respiration and active sodium transport of isolated toad bladder. J Biol Chem. 1959 Jun;234(6):1625–1629. [PubMed] [Google Scholar]
  8. LOWRY O. H., ROBERTS N. R., LEINER K. Y., WU M. L., FARR A. L. The quantitative histochemistry of brain. I. Chemical methods. J Biol Chem. 1954 Mar;207(1):1–17. [PubMed] [Google Scholar]
  9. MORELL S. A., AYERS V. E., GREENWALT T. J. Linear gradient elution of nucleotides from Dowex-1-formate: application to the erythrocyte. Anal Biochem. 1962 Apr;3:285–297. doi: 10.1016/0003-2697(62)90112-4. [DOI] [PubMed] [Google Scholar]
  10. SKOU J. C. Preparation from mammallian brain and kidney of the enzyme system involved in active transport of Na ions and K ions. Biochim Biophys Acta. 1962 Apr 9;58:314–325. doi: 10.1016/0006-3002(62)91015-6. [DOI] [PubMed] [Google Scholar]
  11. TABORSKY G. Interaction between phosvitin and iron and its effect on a rearrangement of phosvitin structure. Biochemistry. 1963 Mar-Apr;2:266–271. doi: 10.1021/bi00902a010. [DOI] [PubMed] [Google Scholar]
  12. TELFORD J. M. Formation of histamine in rat tissues. Nature. 1963 Feb 16;197:701–702. doi: 10.1038/197701b0. [DOI] [PubMed] [Google Scholar]
  13. ZERAHN K. Oxygen consumption and active sodium transport in the isolated and short-circuited frog skin. Acta Physiol Scand. 1956 May 31;36(4):300–318. doi: 10.1111/j.1748-1716.1956.tb01327.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES