Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1982 Oct;152(1):7–13. doi: 10.1128/jb.152.1.7-13.1982

Effect of silver ions on transport and retention of phosphate by Escherichia coli.

W J Schreurs, H Rosenberg
PMCID: PMC221367  PMID: 6749823

Abstract

Silver ions inhibited phosphate uptake and exchange in Escherichia coli and caused efflux of accumulated phosphate as well as of mannitol, succinate, glutamine, and proline. The effects of Ag+ were reversed by thiols and, to a lesser extent, by bromide. In the presence of N-ethylmaleimide and several uncouplers, Ag+ failed to cause phosphate efflux, but still inhibited exchange of intracellular and extracellular phosphate, indicating an interaction at more than one site. It is unlikely that Ag+ caused metabolite efflux by acting solely as an uncoupler, as an inhibitor of the respiratory chain, or as a thiol reagent.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anraku Y. Transport of sugars and amino acids in bacteria. 3. Studies on the restoration of active transport. J Biol Chem. 1968 Jun 10;243(11):3128–3135. [PubMed] [Google Scholar]
  2. Berger E. A., Heppel L. A. Different mechanisms of energy coupling for the shock-sensitive and shock-resistant amino acid permeases of Escherichia coli. J Biol Chem. 1974 Dec 25;249(24):7747–7755. [PubMed] [Google Scholar]
  3. Bragg P. D., Rainnie D. J. The effect of silver ions on the respiratory chain of Escherichia coli. Can J Microbiol. 1974 Jun;20(6):883–889. doi: 10.1139/m74-135. [DOI] [PubMed] [Google Scholar]
  4. CHAPPELL J. B., GREVILLE G. D. Effect of silver ions on mitochondrial adenosine triphosphatase. Nature. 1954 Nov 13;174(4437):930–931. doi: 10.1038/174930b0. [DOI] [PubMed] [Google Scholar]
  5. Cox G. B., Newton N. A., Gibson F., Snoswell A. M., Hamilton J. A. The function of ubiquinone in Escherichia coli. Biochem J. 1970 Apr;117(3):551–562. doi: 10.1042/bj1170551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dietz G. W., Heppel L. A. Studies on the uptake of hexose phosphates. II. The induction of the glucose 6-phosphate transport system by exogenous but not by endogenously formed glucose 6-phosphate. J Biol Chem. 1971 May 10;246(9):2885–2890. [PubMed] [Google Scholar]
  7. Fan D. P., Schlesinger M. J., Torriani A., Barrett K. J., Levinthal C. Isolation and characterization of complementation products of Escherichia coli alkaline phosphatase. J Mol Biol. 1966 Jan;15(1):32–48. doi: 10.1016/s0022-2836(66)80207-3. [DOI] [PubMed] [Google Scholar]
  8. Juan S. M., Segura E. L., Cazzulo J. J. Inhibition of the NADP-linked glutamate dehydrogenase from Trypanosoma cruzi by silver nitrate. Experientia. 1979 Sep 15;35(9):1139–1140. doi: 10.1007/BF01963246. [DOI] [PubMed] [Google Scholar]
  9. Kasahara M., Anraku Y. Inhibition of the respiratory chain of Escherichia coli by zinc ions. J Biochem. 1972 Sep;72(3):777–781. doi: 10.1093/oxfordjournals.jbchem.a129959. [DOI] [PubMed] [Google Scholar]
  10. Medveczky N., Rosenberg H. Phosphate transport in Escherichia coli. Biochim Biophys Acta. 1971 Aug 13;241(2):494–506. doi: 10.1016/0005-2736(71)90048-4. [DOI] [PubMed] [Google Scholar]
  11. Meury J., Lebail S., Kepes A. Opening of potassium channels in Escherichia coli membranes by thiol reagents and recovery of potassium tightness. Eur J Biochem. 1980 Dec;113(1):33–38. doi: 10.1111/j.1432-1033.1980.tb06135.x. [DOI] [PubMed] [Google Scholar]
  12. Mitchell P. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev Camb Philos Soc. 1966 Aug;41(3):445–502. doi: 10.1111/j.1469-185x.1966.tb01501.x. [DOI] [PubMed] [Google Scholar]
  13. Newman M. J., Foster D. L., Wilson T. H., Kaback H. R. Purification and reconstitution of functional lactose carrier from Escherichia coli. J Biol Chem. 1981 Nov 25;256(22):11804–11808. [PubMed] [Google Scholar]
  14. Newman M. J., Wilson T. H. Solubilization and reconstitution of the lactose transport system from Escherichia coli. J Biol Chem. 1980 Nov 25;255(22):10583–10586. [PubMed] [Google Scholar]
  15. Ohnishi S. T. A new method of separating inorganic orthophosphate from phosphoric esters and anhydrides by an immobilized catalyst column. Anal Biochem. 1978 May;86(1):201–213. doi: 10.1016/0003-2697(78)90335-4. [DOI] [PubMed] [Google Scholar]
  16. Plate C. A., Suit J. L. The eup genetic locus of Escherichia coli and its role in H+/solute symport. J Biol Chem. 1981 Dec 25;256(24):12974–12980. [PubMed] [Google Scholar]
  17. Rayman M. K., Lo T. C., Sanwal B. D. Transport of succinate in Escherichia coli. II. Characteristics of uptake and energy coupling with transport in membrane preparations. J Biol Chem. 1972 Oct 10;247(19):6332–6339. [PubMed] [Google Scholar]
  18. Robertson R. N., Boardman N. K. The link between charge separation, proton movement and ATPase reactions. FEBS Lett. 1975 Dec 1;60(1):1–6. doi: 10.1016/0014-5793(75)80405-4. [DOI] [PubMed] [Google Scholar]
  19. Rosenberg H., Cox G. B., Butlin J. D., Gutowski S. J. Metabolite transport in mutants of Escherichia coli K12 defective in electron transport and coupled phosphorylation. Biochem J. 1975 Feb;146(2):417–423. doi: 10.1042/bj1460417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rosenberg H., Gerdes R. G., Chegwidden K. Two systems for the uptake of phosphate in Escherichia coli. J Bacteriol. 1977 Aug;131(2):505–511. doi: 10.1128/jb.131.2.505-511.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rosenberg H., Gerdes R. G., Harold F. M. Energy coupling to the transport of inorganic phosphate in Escherichia coli K12. Biochem J. 1979 Jan 15;178(1):133–137. doi: 10.1042/bj1780133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rosenberg H., Russell L. M., Jacomb P. A., Chegwidden K. Phosphate exchange in the pit transport system in Escherichia coli. J Bacteriol. 1982 Jan;149(1):123–130. doi: 10.1128/jb.149.1.123-130.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Russell L. M., Rosenberg H. The nature of the link between potassium transport and phosphate transport in Escherichia coli. Biochem J. 1980 Jun 15;188(3):715–723. doi: 10.1042/bj1880715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Selwyn M. J., Dawson A. P., Stockdale M., Gains N. Chloride-hydroxide exchange across mitochondrial, erythrocyte and artificial lipid membranes mediated by trialkyl- and triphenyltin compounds. Eur J Biochem. 1970 May 1;14(1):120–126. doi: 10.1111/j.1432-1033.1970.tb00268.x. [DOI] [PubMed] [Google Scholar]
  25. Singh A. P., Bragg P. D. The action of tributyltin chloride on the uptake of proline and glutamine by intact cells of Escherichia coli. Can J Biochem. 1979 Dec;57(12):1376–1383. doi: 10.1139/o79-183. [DOI] [PubMed] [Google Scholar]
  26. Stockdale M., Dawson A. P., Selwyn M. J. Effects of trialkyltin and triphenyltin compounds on mitochondrial respiration. Eur J Biochem. 1970 Aug;15(2):342–351. doi: 10.1111/j.1432-1033.1970.tb01013.x. [DOI] [PubMed] [Google Scholar]
  27. Willsky G. R., Bennett R. L., Malamy M. H. Inorganic phosphate transport in Escherichia coli: involvement of two genes which play a role in alkaline phosphatase regulation. J Bacteriol. 1973 Feb;113(2):529–539. doi: 10.1128/jb.113.2.529-539.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Winkler H. H. Compartmentation in the induction of the hexose-6-phosphate transport system of Escherichia coli. J Bacteriol. 1970 Feb;101(2):470–475. doi: 10.1128/jb.101.2.470-475.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES