Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1965 May 1;48(5):825–839. doi: 10.1085/jgp.48.5.825

The Effects of Zinc on Contractility, Membrane Potentials, and Cation Content of Rat Atria

Frank R Ciofalo 1, Lyell J Thomas Jr 1
PMCID: PMC2213758  PMID: 14324990

Abstract

Zinc depresses the contractile force of electrically driven rat atria logarithmically with time. The threshold concentration is about 5 x 10-6 M zinc and the half-time for contractile depression at 10-4 M is about 25 minutes. Zinc also depresses spontaneous activity of atria and alters the transmembrane potential parameters in a manner similar to quinidine. Unlike quinidine, zinc causes an elevation of the resting potential and an elevation of cellular potassium which varies with time in the same way as the resting potential. Exposure to 10-4 M zinc for 60 minutes causes a statistically significant fall in atrial calcium content and an amount of radioactively labeled zinc is taken up which is quantitatively equal to the calcium lost. Zinc has no effect on rigor caused by iodoacetate but inhibits rigor caused by 1-fluoro-2,4 dinitrobenzene. It is postulated that zinc depression of contractile force is not due to metabolic inhibition, probably not due to quinidine-like action on the cell membrane, but may be due to an interference in the handling of calcium by the cell.

Full Text

The Full Text of this article is available as a PDF (887.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bate-Smith E. C., Bendall J. R. Rigor mortis and adenosine-triphosphate. J Physiol. 1947 Jun 2;106(2):177–185. [PMC free article] [PubMed] [Google Scholar]
  2. CAIN D. F., DAVIES R. E. Breakdown of adenosine triphosphate during a single contraction of working muscle. Biochem Biophys Res Commun. 1962 Aug 7;8:361–366. doi: 10.1016/0006-291x(62)90008-6. [DOI] [PubMed] [Google Scholar]
  3. CONRAD L. L., BAXTER D. J. EFFECTS OF MANGANESE ON Q-T INTERVAL AND DISTRIBUTION OF CALCIUM IN RAT HEART. Am J Physiol. 1963 Dec;205:1209–1212. doi: 10.1152/ajplegacy.1963.205.6.1209. [DOI] [PubMed] [Google Scholar]
  4. EDMAN K. A., GRIEVE D. W. The role of calcium and zinc in the electrical and mechanical responses of frog sartorius muscle. Experientia. 1961 Dec 15;17:557–558. doi: 10.1007/BF02156422. [DOI] [PubMed] [Google Scholar]
  5. EDMAN K. A. Zinc-induced relaxation of muscle fibers. Acta Physiol Scand. 1960 Aug 25;49:330–342. doi: 10.1111/j.1748-1716.1960.tb01956.x. [DOI] [PubMed] [Google Scholar]
  6. GEYER R. P., BOWIE E. J. The direct microdetermination of tissue calcium by flame photometry. Anal Biochem. 1961 Aug;2:360–369. doi: 10.1016/0003-2697(61)90009-4. [DOI] [PubMed] [Google Scholar]
  7. GIMENO A. L., GIMENO M. F., WEBB J. L. Effects of ethanol on cellular membrane potentials and contractility of isolated rat atrium. Am J Physiol. 1962 Jul;203:194–196. doi: 10.1152/ajplegacy.1962.203.1.194. [DOI] [PubMed] [Google Scholar]
  8. GREEN J. P., GIARMAN N. J., SALTER W. T. The action of serum protein fractions on the isolated mammalian myocardium. J Pharmacol Exp Ther. 1952 Nov;106(3):346–352. [PubMed] [Google Scholar]
  9. HOLLANDER P. B., WEBB J. L. Cellular membrane potentials and contractility of normal rat atrium and the effects of temperature, tension and stimulus frequency. Circ Res. 1955 Nov;3(6):604–612. doi: 10.1161/01.res.3.6.604. [DOI] [PubMed] [Google Scholar]
  10. ISAACSON A., SANDOW A. Effects of zinc on responses of skeletal muscle. J Gen Physiol. 1963 Mar;46:655–677. doi: 10.1085/jgp.46.4.655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. JOHNSON E. A. The effects of quinidine, procaine amide and pyrilamine on the membrane resting and action potential of guinea pig ventricular muscle fibers. J Pharmacol Exp Ther. 1956 Jun;117(2):237–244. [PubMed] [Google Scholar]
  12. KOBAYASHI H. [The effect of divalent metallic ions on the electrical activity of frog's skeletal muscle]. Nihon Seirigaku Zasshi. 1962 Oct;24:525–532. [PubMed] [Google Scholar]
  13. MARTONOSI A., FERETOS R. SARCOPLASMIC RETICULUM. I. THE UPTAKE OF CA++ BY SARCOPLASMIC RETICULUM FRAGMENTS. J Biol Chem. 1964 Feb;239:648–658. [PubMed] [Google Scholar]
  14. MASHIMA H., WASHIO H. THE EFFECT OF ZINC ON THE ELECTRICAL PROPERTIES OF MEMBRANE AND THE TWITCH TENSION IN FROG MUSCLE FIBRES. Jpn J Physiol. 1964 Oct 15;14:538–550. doi: 10.2170/jjphysiol.14.538. [DOI] [PubMed] [Google Scholar]
  15. PAGE E. Cat heart muscle in vitro. II. The steady state restpotential in quiescent papillary muscles. J Gen Physiol. 1962 Nov;46:189–199. doi: 10.1085/jgp.46.2.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. SANDOW A., TAYLOR S. R., ISAASON A., SEGUIN J. J. ELECTROCHEMICAL COUPLING IN POTENTIATION OF MUSCULAR CONTRACTION. Science. 1964 Feb 7;143(3606):577–579. doi: 10.1126/science.143.3606.577. [DOI] [PubMed] [Google Scholar]
  17. WEBB J. L., HOLLANDER P. B. Effects of enzyme inhibitors on the contractility and membrane potentials of the rat atrium. Circ Res. 1959 Jan;7(1):131–137. doi: 10.1161/01.res.7.1.131. [DOI] [PubMed] [Google Scholar]
  18. WEIDMANN S. Effects of calcium ions and local anesthetics on electrical properties of Purkinje fibres. J Physiol. 1955 Sep 28;129(3):568–582. doi: 10.1113/jphysiol.1955.sp005379. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES