Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1965 May 1;48(5):933–948. doi: 10.1085/jgp.48.5.933

Cat Heart Muscle in Vitro

VI. Potassium exchange in papillary muscles

Jon Goerke 1, Ernest Page 1
PMCID: PMC2213761  PMID: 14324997

Abstract

The exchange of cell K with K42, J K, has been measured in cat right ventricular papillary muscle under conditions of a steady state with respect to intracellular K concentration. Within the limits of the measurement, all of cell K exchanged at a single rate. Cells from small cats are smaller and have larger surface/volume ratios than cells from large cats. The larger surface/volume ratio results in larger flux values. J K increases in an approximately linear manner as the external K concentration is increased twentyfold, from 2.5 to 50 mM, at constant intracellular K concentration. The permeability for K ions, P K, calculated from the influx and membrane potential, remains very nearly constant over this range of external K concentrations. J K is not affected by replacement of O2 by N2, or by stimulated contractions at 60 per minute, but K influx decreases markedly in 10-5 M and 10-8 M ouabain.

Full Text

The Full Text of this article is available as a PDF (934.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BURROWS R., LAMB J. F. Sodium and potassium fluxes in cells cultured from chick embryo heart muscle. J Physiol. 1962 Aug;162:510–531. doi: 10.1113/jphysiol.1962.sp006947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brady A. J., Woodbury J. W. The sodium-potassium hypothesis as the basis of electrical activity in frog ventricle. J Physiol. 1960 Dec;154(2):385–407. doi: 10.1113/jphysiol.1960.sp006586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DANIELSON B., OBRINK K. J., SJOSTRAND U. Efflux of sodium and potassium from isolated frog heart during the cardiac cycle. Acta Soc Med Ups. 1962;67:179–198. [PubMed] [Google Scholar]
  4. DRAPER M. H., MYA-TU M. A comparison of the conduction velocity in cardiac tissues of various mammals. Q J Exp Physiol Cogn Med Sci. 1959 Jan;44(1):91–109. doi: 10.1113/expphysiol.1959.sp001379. [DOI] [PubMed] [Google Scholar]
  5. HODGKIN A. L., HOROWICZ P. Movements of Na and K in single muscle fibres. J Physiol. 1959 Mar 3;145(2):405–432. doi: 10.1113/jphysiol.1959.sp006150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. HODGKIN A. L., KATZ B. The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol. 1949 Mar 1;108(1):37–77. doi: 10.1113/jphysiol.1949.sp004310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HUMPHREY E. W., JOHNSON J. A. Potassium flux in the isolated perfused rabbit heart. Am J Physiol. 1960 Jun;198:1217–1222. doi: 10.1152/ajplegacy.1960.198.6.1217. [DOI] [PubMed] [Google Scholar]
  8. LORBER V., WALKER J. L., Jr, GREENE E. A., MINARIK M. H., PAK M. J. Phasic efflux of potassium from frog ventricle. Am J Physiol. 1962 Aug;203:253–257. doi: 10.1152/ajplegacy.1962.203.2.253. [DOI] [PubMed] [Google Scholar]
  9. NELSON D. A., BENSON E. S. On the structural continuities of the transverse tubular system of rabbit and human myocardial cells. J Cell Biol. 1963 Feb;16:297–313. doi: 10.1083/jcb.16.2.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. PAGE E., BERNSTEIN R. S. CAT HEART MUSCLE IN VITRO. V. DIFFUSION THROUGH A SHEET OF RIGHT VENTRICLE. J Gen Physiol. 1964 Jul;47:1129–1140. doi: 10.1085/jgp.47.6.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. PAGE E. CAT HEART MUSCLE IN VITRO. VII. THE TEMPERATURE DEPENDENCE OF STEADY STATE K EXCHANGE IN PRESENCE AND ABSENCE OF NACL. J Gen Physiol. 1965 May;48:949–956. doi: 10.1085/jgp.48.5.949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. PAGE E. Cat heart muscle in vitro. II. The steady state restpotential in quiescent papillary muscles. J Gen Physiol. 1962 Nov;46:189–199. doi: 10.1085/jgp.46.2.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. PAGE E. Cat heart muscle in vitro. III. The extracellular space. J Gen Physiol. 1962 Nov;46:201–213. doi: 10.1085/jgp.46.2.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. PAGE E., GOERKE R. J., STORM S. R. CAT HEART MUSCLE IN VITRO. IV. INHIBITION OF TRANSPORT IN QUIESCENT MUSCLES. J Gen Physiol. 1964 Jan;47:531–543. doi: 10.1085/jgp.47.3.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. PAGE E., SOLOMON A. K. Cat heart muscle in vitro. I. Cell volumes and intracellular concentrations in papillary muscle. J Gen Physiol. 1960 Nov;44:327–344. doi: 10.1085/jgp.44.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. SCHREIBER S. S., ORATZ M., ROTHSCHILD M. A. Effect of ouabain on potassium exchange in the mammalian heart. Am J Physiol. 1961 May;200:1055–1062. doi: 10.1152/ajplegacy.1961.200.5.1055. [DOI] [PubMed] [Google Scholar]
  17. SCHREIBER S. S. Potassium and sodium exchange in the working frog heart; effects of overwork, external concentrations of potassium and ouabain. Am J Physiol. 1956 May;185(2):337–347. doi: 10.1152/ajplegacy.1956.185.2.337. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES