Abstract
Under anaerobic conditions an exponentially growing culture of Escherichia coli K-12 was exposed to hydrogen peroxide in the presence of various compounds. Hydrogen peroxide (0.1 mM) together with 0.1 mM L-cysteine or L-cystine killed the organisms more rapidly than 10 mM hydrogen peroxide alone. The exposure of E. coli to hydrogen peroxide in the presence of L-cysteine inhibited some of the catalase. This inhibition, however, could not fully explain the 100-fold increase in hydrogen peroxide sensitivity of the organism in the presence of L-cysteine. Of other compounds tested only some thiols potentiated the bactericidal effect of hydrogen peroxide. These thiols were effective, however, only at concentrations significantly higher than 0.1 mM. The effect of L-cysteine and L-cystine could be annihilated by the metal ion chelating agent 2,2'-bipyridyl. DNA breakage in E. coli K-12 was demonstrated under conditions where the organisms were killed by hydrogen peroxide.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ananthaswamy H. N., Eisenstark A. Repair of hydrogen peroxide-induced single-strand breaks in Escherichia coli deoxyribonucleic acid. J Bacteriol. 1977 Apr;130(1):187–191. doi: 10.1128/jb.130.1.187-191.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BEERS R. F., Jr, SIZER I. W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem. 1952 Mar;195(1):133–140. [PubMed] [Google Scholar]
- Bachmann B. J. Pedigrees of some mutant strains of Escherichia coli K-12. Bacteriol Rev. 1972 Dec;36(4):525–557. doi: 10.1128/br.36.4.525-557.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bhuvaneswaran C., Sreenivasan A., Rege D. V. Effect of cysteine on respiration and catalyse synthesis by Saccharomyces cerevisiae. Biochem J. 1964 Sep;92(3):504–508. doi: 10.1042/bj0920504. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Carlsson J., Carpenter V. S. The recA+ gene product is more important than catalase and superoxide dismutase in protecting Escherichia coli against hydrogen peroxide toxicity. J Bacteriol. 1980 Apr;142(1):319–321. doi: 10.1128/jb.142.1.319-321.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carlsson J., Granberg G. P., Nyberg G. K., Edlund M. B. Bactericidal effect of cysteine exposed to atmospheric oxygen. Appl Environ Microbiol. 1979 Mar;37(3):383–390. doi: 10.1128/aem.37.3.383-390.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carlsson J., Nyberg G., Wrethén J. Hydrogen peroxide and superoxide radical formation in anaerobic broth media exposed to atmospheric oxygen. Appl Environ Microbiol. 1978 Aug;36(2):223–229. doi: 10.1128/aem.36.2.223-229.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Childs R. E., Bardsley W. G. The steady-state kinetics of peroxidase with 2,2'-azino-di-(3-ethyl-benzthiazoline-6-sulphonic acid) as chromogen. Biochem J. 1975 Jan;145(1):93–103. doi: 10.1042/bj1450093. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clement J. R., Lin W. S., Armstrong D. A. Changes in optical density, amino acid composition, and fluorescence of papain inactivated by hydroxyl radicals and hydrogen peroxide. Radiat Res. 1977 Dec;72(3):427–439. [PubMed] [Google Scholar]
- Floyd R. A. DNA-ferrous iron catalyzed hydroxyl free radical formation from hydrogen peroxide. Biochem Biophys Res Commun. 1981 Apr 30;99(4):1209–1215. doi: 10.1016/0006-291x(81)90748-8. [DOI] [PubMed] [Google Scholar]
- Gaitonde M. K. A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. Biochem J. 1967 Aug;104(2):627–633. doi: 10.1042/bj1040627. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gardner H. W., Jursinic P. A. Degradation of linoleic acid hydroperoxides by a cysteine . FeCl3 catalyst as a model for similar biochemical reactions. I. Study of oxygen requirement, catalyst and effect of pH. Biochim Biophys Acta. 1981 Jul 24;665(1):100–112. doi: 10.1016/0005-2760(81)90238-1. [DOI] [PubMed] [Google Scholar]
- George P. A comparison of the decomposition of hydrogen peroxide by catalase, ferrous and ferric ions, haemin and ferrous phthalocyanine. Biochem J. 1948;43(2):287–295. doi: 10.1042/bj0430287. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gutteridge J. M., Xiao Change F. Protection of iron-catalysed the radical damage to DNA and lipids by copper (II) bleomycin. Biochem Biophys Res Commun. 1981 Apr 30;99(4):1354–1360. doi: 10.1016/0006-291x(81)90768-3. [DOI] [PubMed] [Google Scholar]
- Harris C. L., Lui L. Cysteine and growth inhibition of Escherichia coli: derepression of the ilvGEDA operon. Biochem Biophys Res Commun. 1981 Aug 31;101(4):1145–1151. doi: 10.1016/0006-291x(81)91567-9. [DOI] [PubMed] [Google Scholar]
- Hartman P. S., Eisenstark A. Synergistic killing of Escherichia coli by near-UV radiation and hydrogen peroxide: distinction between recA-repairable and recA-nonrepairable damage. J Bacteriol. 1978 Feb;133(2):769–774. doi: 10.1128/jb.133.2.769-774.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoffmann M. E., Meneghini R. Action of hydrogen peroxide on human fibroblast in culture. Photochem Photobiol. 1979 Jul;30(1):151–155. doi: 10.1111/j.1751-1097.1979.tb07128.x. [DOI] [PubMed] [Google Scholar]
- Howe-Grant M., Lippard S. J. Binding of platinum(II) intercalation reagents to deoxyribnonucleic acid. Dependence on base-pair composition, nature of the intercalator, and ionic strength. Biochemistry. 1979 Dec 25;18(26):5762–5769. doi: 10.1021/bi00593a003. [DOI] [PubMed] [Google Scholar]
- Kari C., Nagy Z., Kovács P., Hernádi F. Mechanism of the growth inhibitory effect of cysteine on Escherichia coli. J Gen Microbiol. 1971 Nov;68(3):349–356. doi: 10.1099/00221287-68-3-349. [DOI] [PubMed] [Google Scholar]
- Lal M., Lin W. S., Gaucher G. M., Armstrong D. A. The repair, protection and sensitization of papain with respect to inactivation by H2O2 and OH: effects of dithiothreitol, penicillamine, cystine and penicillamine disulphide. Int J Radiat Biol Relat Stud Phys Chem Med. 1975 Dec;28(6):549–564. doi: 10.1080/09553007514551411. [DOI] [PubMed] [Google Scholar]
- Little C., O'Brien P. J. Mechanism of peroxide-inactivation of the sulphydryl enzyme glyceraldehyde-3-phosphate dehydrogenase. Eur J Biochem. 1969 Oct;10(3):533–538. doi: 10.1111/j.1432-1033.1969.tb00721.x. [DOI] [PubMed] [Google Scholar]
- Marklund S., Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974 Sep 16;47(3):469–474. doi: 10.1111/j.1432-1033.1974.tb03714.x. [DOI] [PubMed] [Google Scholar]
- Marshall L. E., Graham D. R., Reich K. A., Sigman D. S. Cleavage of deoxyribonucleic acid by the 1,10-phenanthroline-cuprous complex. Hydrogen peroxide requirement and primary and secondary structure specificity. Biochemistry. 1981 Jan 20;20(2):244–250. doi: 10.1021/bi00505a003. [DOI] [PubMed] [Google Scholar]
- Nagy Z., Hernádi F., Kovács P., Vályi-Nagy T. Correlation between the physiological state of bacteria and the radioprotective effectiveness of cysteine. Arch Mikrobiol. 1968;61(4):327–334. doi: 10.1007/BF00409669. [DOI] [PubMed] [Google Scholar]
- Neidhardt F. C., Bloch P. L., Smith D. F. Culture medium for enterobacteria. J Bacteriol. 1974 Sep;119(3):736–747. doi: 10.1128/jb.119.3.736-747.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pirie N. W. The oxidation of sulphydryl compounds by hydrogen peroxide: Catalysis of oxidation of cysteine and glutathione by iron and copper. Biochem J. 1931;25(5):1565–1579. doi: 10.1042/bj0251565. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takeda A., Miyahara T., Hachimori A., Samejima T. The interactions of thiol compounds with porcine erythrocyte catalase. J Biochem. 1980 Feb;87(2):429–439. doi: 10.1093/oxfordjournals.jbchem.a132763. [DOI] [PubMed] [Google Scholar]
- Town C. D., Smith K. C., Kaplan H. S. Production and repair of radiochemical damage in Escherichia coli deoxyribonucleic acid; its modification by culture conditions and relation to survival. J Bacteriol. 1971 Jan;105(1):127–135. doi: 10.1128/jb.105.1.127-135.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamada T., Carlsson J. Regulation of lactate dehydrogenase and change of fermentation products in streptococci. J Bacteriol. 1975 Oct;124(1):55–61. doi: 10.1128/jb.124.1.55-61.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]