Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1965 May 1;48(5):797–823. doi: 10.1085/jgp.48.5.797

Propagation of Action Potentials and the Structure of the Nexus in Cardiac Muscle

L Barr 1, M M Dewey 1, W Berger 1
PMCID: PMC2213773  PMID: 14324989

Abstract

The hypothesis that the nexus is a specialized structure allowing current flow between cell interiors is corroborated by concomitant structural changes of the nexus and changes of electrical coupling between cells due to soaking in solutions of abnormal tonicity. Fusiform frog atrial fibers are interconnected by nexuses. The nexuses, desmosomes, and regions of myofibrillar attachment of this muscle are not associated in a manner similar to intercalated discs of guinea pig cardiac muscle. Indeed, nexuses occur wherever cell membranes are closely apposed. Action potentials of frog atrial bundles detected extracellularly across a sucrose gap change from monophasic to diphasic when the gap is shunted by a resistor. This indicates that action potentials are transmitted across the gap when sufficient excitatory current is allowed to flow across the gap. When the sucrose solution in the gap is made hypertonic, propagation past the gap is blocked and the resistance between the cells in the gap increases. Electron micrographs demonstrate that the nexuses of frog atrium and guinea pig ventricle are ruptured by hypertonic solutions.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLEN J. N. Extracellular space in the central nervous system. AMA Arch Neurol Psychiatry. 1955 Feb;73(2):241–248. doi: 10.1001/archneurpsyc.1955.02330080119021. [DOI] [PubMed] [Google Scholar]
  2. BARR L., BERGER W. THE ROLE OF CURRENT FLOW IN THE PROPAGATION OF CARDIAC MUSCLE ACTION POTENTIALS. Pflugers Arch Gesamte Physiol Menschen Tiere. 1964 Apr 13;279:192–194. doi: 10.1007/BF00412779. [DOI] [PubMed] [Google Scholar]
  3. BARR L. Transmembrane resistance of smooth muscle cells. Am J Physiol. 1961 Jun;200:1251–1255. doi: 10.1152/ajplegacy.1961.200.6.1251. [DOI] [PubMed] [Google Scholar]
  4. BENNETT M. V., ALJURE E., NAKAJIMA Y., PAPPAS G. D. Electrotonic junctions between teleost spinal neurons: electrophysiology and ultrastructure. Science. 1963 Jul 19;141(3577):262–264. doi: 10.1126/science.141.3577.262. [DOI] [PubMed] [Google Scholar]
  5. BERGMAN R. A. Intercellular bridges in ureteral smooth muscle. Bull Johns Hopkins Hosp. 1958 Apr;102(4):195–202. [PubMed] [Google Scholar]
  6. Barr L. Propagation in vertebrate visceral smooth muscle. J Theor Biol. 1963 Jan;4(1):73–85. doi: 10.1016/0022-5193(63)90101-2. [DOI] [PubMed] [Google Scholar]
  7. DEWEY M. M., BARR L. A STUDY OF THE STRUCTURE AND DISTRIBUTION OF THE NEXUS. J Cell Biol. 1964 Dec;23:553–585. doi: 10.1083/jcb.23.3.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dewey M. M., Barr L. Intercellular Connection between Smooth Muscle Cells: the Nexus. Science. 1962 Aug 31;137(3531):670–672. doi: 10.1126/science.137.3531.670-a. [DOI] [PubMed] [Google Scholar]
  9. EDWARDS C., KUFFLER S. W., TRAUTWEIN W. Changes in membrane characteristics of heart muscle during inhibition. J Gen Physiol. 1956 Sep 20;40(1):135–145. doi: 10.1085/jgp.40.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. FARQUHAR M. G., PALADE G. E. Junctional complexes in various epithelia. J Cell Biol. 1963 May;17:375–412. doi: 10.1083/jcb.17.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. FAWCETT D. W., SELBY C. C. Observations on the fine structure of the turtle atrium. J Biophys Biochem Cytol. 1958 Jan 25;4(1):63–72. doi: 10.1083/jcb.4.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. FURSHPAN E. J. "ELECTRICAL TRANSMISSION" AT AN EXCITATORY SYNAPSE IN A VERTEBRATE BRAIN. Science. 1964 May 15;144(3620):878–880. doi: 10.1126/science.144.3620.878. [DOI] [PubMed] [Google Scholar]
  13. FURSHPAN E. J., POTTER D. D. Transmission at the giant motor synapses of the crayfish. J Physiol. 1959 Mar 3;145(2):289–325. doi: 10.1113/jphysiol.1959.sp006143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. FURUKAWA T., FURSHPAN E. J. Two inhibitory mechanisms in the Mauthner neurons of goldfish. J Neurophysiol. 1963 Jan;26:140–176. doi: 10.1152/jn.1963.26.1.140. [DOI] [PubMed] [Google Scholar]
  15. HAGIWARA S., TASAKI I. A study on the mechanism of impulse transmission across the giant synapse of the squid. J Physiol. 1958 Aug 29;143(1):114–137. doi: 10.1113/jphysiol.1958.sp006048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. HAMA K. Some observations on the fine structure of the giant fibers of the crayfishes (Cambarus virilus and Cambarus clarkii) with special reference to the submicroscopic organization of the synapses. Anat Rec. 1961 Dec;141:275–293. doi: 10.1002/ar.1091410403. [DOI] [PubMed] [Google Scholar]
  17. HAMA K. Some observations on the fine structure of the giant nerve fibers of the earthworm, Eisenia foetida. J Biophys Biochem Cytol. 1959 Aug;6(1):61–66. doi: 10.1083/jcb.6.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. HUXLEY H. E. EVIDENCE FOR CONTINUITY BETWEEN THE CENTRAL ELEMENTS OF THE TRIADS AND EXTRACELLULAR SPACE IN FROG SARTORIUS MUSCLE. Nature. 1964 Jun 13;202:1067–1071. doi: 10.1038/2021067b0. [DOI] [PubMed] [Google Scholar]
  19. KAO C. Y., GRUNDFEST H. Postsynaptic electrogenesis in septate giant axons. I. Earthworm median giant axon. J Neurophysiol. 1957 Nov;20(6):553–573. doi: 10.1152/jn.1957.20.6.553. [DOI] [PubMed] [Google Scholar]
  20. KARNOVSKY M. J. Simple methods for "staining with lead" at high pH in electron microscopy. J Biophys Biochem Cytol. 1961 Dec;11:729–732. doi: 10.1083/jcb.11.3.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. MARTIN A. R., PILAR G. DUAL MODE OF SYNAPTIC TRANSMISSION IN THE AVIAN CILIARY GANGLION. J Physiol. 1963 Sep;168:443–463. doi: 10.1113/jphysiol.1963.sp007202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. MARTIN A. R., PILAR G. TRANSMISSION THROUGH THE CILIARY GANGLION OF THE CHICK. J Physiol. 1963 Sep;168:464–475. doi: 10.1113/jphysiol.1963.sp007203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. NAGAI T., PROSSER C. L. Electrical parameters of smooth muscle cells. Am J Physiol. 1963 May;204:915–924. doi: 10.1152/ajplegacy.1963.204.5.915. [DOI] [PubMed] [Google Scholar]
  24. PETERS A. Plasma membrane contacts in the central nervous system. J Anat. 1962 Apr;96:237–248. [PMC free article] [PubMed] [Google Scholar]
  25. POCHE R., LINDNER E. Untersuchungen zur Frage der Glanzstreifen des Herzmuskelgewebes beim Warmblüter und beim Kaltblüter. Z Zellforsch Mikrosk Anat. 1955;43(2):104–120. [PubMed] [Google Scholar]
  26. ROBERTSON J. D. THE OCCURRENCE OF A SUBUNIT PATTERN IN THE UNIT MEMBRANES OF CLUB ENDINGS IN MAUTHNER CELL SYNAPSES IN GOLDFISH BRAINS. J Cell Biol. 1963 Oct;19:201–221. doi: 10.1083/jcb.19.1.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. ROBERTSON J. D. The molecular structure and contact relationships of cell membranes. Prog Biophys Mol Biol. 1960;10:343–418. [PubMed] [Google Scholar]
  28. ROBERTSON J. D. Ultrastructure of excitable membranes and the crayfish median-giant synapse. Ann N Y Acad Sci. 1961 Sep 6;94:339–389. doi: 10.1111/j.1749-6632.1961.tb35552.x. [DOI] [PubMed] [Google Scholar]
  29. SEDAR A. W., FORTE J. G. EFFECTS OF CALCIUM DEPLETION ON THE JUNCTIONAL COMPLEX BETWEEN OXYNTIC CELLS OF GASTRIC GLANDS. J Cell Biol. 1964 Jul;22:173–188. doi: 10.1083/jcb.22.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. SJOSTRAND F. S., ANDERSSON-CEDERGREN E., DEWEY M. M. The ultrastructure of the intercalated discs of frog, mouse and guinea pig cardiac muscle. J Ultrastruct Res. 1958 Apr;1(3):271–287. doi: 10.1016/s0022-5320(58)80008-8. [DOI] [PubMed] [Google Scholar]
  31. SJOSTRAND F. S., ANDERSSON E. Electron microscopy of the intercalated discs of cardiac muscle tissue. Experientia. 1954 Sep 15;10(9):369–370. doi: 10.1007/BF02160542. [DOI] [PubMed] [Google Scholar]
  32. SPERELAKIS N., HOSHIKO T., BERNE R. M. Nonsyncytial nature of cardiac muscle: membrane resistance of single cells. Am J Physiol. 1960 Mar;198:531–536. doi: 10.1152/ajplegacy.1960.198.3.531. [DOI] [PubMed] [Google Scholar]
  33. SPERELAKIS N., LEHMKUHL D. EFFECT OF CURRENT ON TRANSMEMBRANE POTENTIALS IN CULTURED CHICK HEART CELLS. J Gen Physiol. 1964 May;47:895–927. doi: 10.1085/jgp.47.5.895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. VILLEGAS R., VILLEGAS L., GIMENEZ M., VILLEGAS G. M. Schwann cell and axon electrical potential differences. Squid nerve structure and excitable membrane location. J Gen Physiol. 1963 May;46:1047–1064. doi: 10.1085/jgp.46.5.1047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. WATANABE A., BULLOCK T. H. Modulation of activity of one neuron by subthreshold slow potentials in another in lobster cardiac ganglion. J Gen Physiol. 1960 Jul;43:1031–1045. doi: 10.1085/jgp.43.6.1031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. WATANABE A., GRUNDFEST H. Impulse propagation at the septal and commissural junctions of crayfish lateral giant axons. J Gen Physiol. 1961 Nov;45:267–308. doi: 10.1085/jgp.45.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. WEIDMANN S. The electrical constants of Purkinje fibres. J Physiol. 1952 Nov;118(3):348–360. doi: 10.1113/jphysiol.1952.sp004799. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES