Abstract
In vitro studies of the secretory behavior of the parietovisceral ganglion in Aplysia californica were performed. The aim of these studies was to investigate the release of polypeptides in response to depolarizing stimuli, and, in particular, to determine if a specific polypeptide known to induce egg laying in the intact animal is secreted into the bathing medium. During continuous perfusion of a ganglion preincubated in leucine-3H the application of either high-potassium medium or a burst of electrical stimuli (via the pleurovisceral connective nerve) evoked a marked increase in the amount of trichloroacetic acid (TCA)-precipitable radioactivity recovered in the perfusate. Enhanced release could be detected within 80 sec of the initial exposure to high potassium; however, incubation of a ganglion in calcium-free media before the application of high-potassium medium abolished the increase of precipitable radioactivity. Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis of perfusate samples revealed a significant change in the polypeptide species washed from the ganglion during high-potassium depolarization. Bioassays confirmed that egg laying is induced when high-potassium medium used to bathe a ganglion is injected into a recipient animal. These and other results permit the conclusion that the bulk of the polypeptide material secreted from the ganglion in response to depolarization is a specific neurohormone produced by two identified cell clusters, the so-called bag cells.
Full Text
The Full Text of this article is available as a PDF (784.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berlind A., Cooke I. M. Effect of calcium omission on neurosecretion and electrical activity of crab pericardial organs. Gen Comp Endocrinol. 1968 Oct;11(2):458–463. doi: 10.1016/0016-6480(68)90100-7. [DOI] [PubMed] [Google Scholar]
- Carpenter D. O., Alving B. O. A contribution of an electrogenic Na+ pump to membrane potential in Aplysia neurons. J Gen Physiol. 1968 Jul;52(1):1–21. doi: 10.1085/jgp.52.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coggeshall R. E. A light and electron microscope study of the abdominal ganglion of Aplysia californica. J Neurophysiol. 1967 Nov;30(6):1263–1287. doi: 10.1152/jn.1967.30.6.1263. [DOI] [PubMed] [Google Scholar]
- Coggeshall R. E., Kandel E. R., Kupfermann I., Waziri R. A morphological and functional study on a cluster of identifiable neurosecretory cells in the abdominal ganglion of aplysia californica. J Cell Biol. 1966 Nov 1;31(2):363–368. doi: 10.1083/jcb.31.2.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- EAGLE H. Amino acid metabolism in mammalian cell cultures. Science. 1959 Aug 21;130(3373):432–437. doi: 10.1126/science.130.3373.432. [DOI] [PubMed] [Google Scholar]
- Giller E., Jr, Schwartz J. H. Acetylcholinesterase in identified neurons of abdominal ganglion of Aplysia californica. J Neurophysiol. 1971 Jan;34(1):108–115. doi: 10.1152/jn.1971.34.1.108. [DOI] [PubMed] [Google Scholar]
- Giller E., Jr, Schwartz J. H. Choline acetyltransferase: regional distribution in the abdominal ganglion of Aplysia. Science. 1968 Aug 30;161(3844):908–911. doi: 10.1126/science.161.3844.908. [DOI] [PubMed] [Google Scholar]
- Katz B., Miledi R. A study of synaptic transmission in the absence of nerve impulses. J Physiol. 1967 Sep;192(2):407–436. doi: 10.1113/jphysiol.1967.sp008307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kupfermann I., Kandel E. R. Electrophysiological properties and functional interconnections of two symmetrical neurosecretory clusters (bag cells) in abdominal ganglion of Aplysia. J Neurophysiol. 1970 Nov;33(6):865–876. doi: 10.1152/jn.1970.33.6.865. [DOI] [PubMed] [Google Scholar]
- Kupfermann I. Stimulation of egg laying by extracts of neuroendocrine cells (bag cells) of abdominal ganglion of Aplysia. J Neurophysiol. 1970 Nov;33(6):877–881. doi: 10.1152/jn.1970.33.6.877. [DOI] [PubMed] [Google Scholar]
- Kupfermann I. Stimulation of egg laying: possible neuroendocrine function of bag cells of abdominal ganglion of Aplysia californica. Nature. 1967 Nov 25;216(5117):814–815. doi: 10.1038/216814a0. [DOI] [PubMed] [Google Scholar]
- McCaman R. E., Dewhurst S. A. Choline acetyltransferase in individual neurons of Aplysia californica. J Neurochem. 1970 Sep;17(9):1421–1426. doi: 10.1111/j.1471-4159.1970.tb06877.x. [DOI] [PubMed] [Google Scholar]
- Miledi R., Slater C. R. The action of calcium on neuronal synapses in the squid. J Physiol. 1966 May;184(2):473–498. doi: 10.1113/jphysiol.1966.sp007927. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peterson R. P., Kernell D. Effects of nerve stimulation on the metabolism of ribonucleic acid in a molluscan giant neurone. J Neurochem. 1970 Jul;17(7):1075–1085. doi: 10.1111/j.1471-4159.1970.tb02261.x. [DOI] [PubMed] [Google Scholar]
- Rasmussen H. Cell communication, calcium ion, and cyclic adenosine monophosphate. Science. 1970 Oct 23;170(3956):404–412. doi: 10.1126/science.170.3956.404. [DOI] [PubMed] [Google Scholar]
- Sato M., Austin G., Yai H., Maruhashi J. The ionic permeability changes during acetylcholine-induced responses of Aplysia ganglion cells. J Gen Physiol. 1968 Mar;51(3):321–345. doi: 10.1085/jgp.51.3.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tauc L. Transmission in invertebrate and vertebrate ganglia. Physiol Rev. 1967 Jul;47(3):521–593. doi: 10.1152/physrev.1967.47.3.521. [DOI] [PubMed] [Google Scholar]
- Ward S., Wilson D. L., Gilliam J. J. Methods for fractionation and scintillation counting of radioisotope-labeled polyacrylamide gels. Anal Biochem. 1970 Nov;38(1):90–97. doi: 10.1016/0003-2697(70)90158-2. [DOI] [PubMed] [Google Scholar]
- Wilson D. L. Molecular weight distribution of proteins synthesized in single, identified neurons of Aplysia. J Gen Physiol. 1971 Jan;57(1):26–40. doi: 10.1085/jgp.57.1.26. [DOI] [PMC free article] [PubMed] [Google Scholar]
