Abstract
Studies were made of the dependence of the rate of oxygen consumption, Jr, on the electrical potential difference, Δψ, across the frog skin. After the abolition of sodium transport by ouabain the basal oxygen consumption was independent of Δψ. In fresh skins Jr was a linear function of Δψ over a range of at least ±70 mv. Treatment with aldosterone stimulated the short-circuit current, Io, and the associated rate of oxygen consumption, Jro, and increased their stability; linearity was then demonstrable over a range of ±160 mv. Brief perturbations of Δψ (±30–200 mv) did not alter subsequent values of Io. Perturbations for 10 min or more produced a "memory" effect both with and without aldosterone: accelerating sodium transport by negative clamping lowered the subsequent value of Io; positive clamping induced the opposite effect. Changes in Jro were more readily detectable in the presence of aldosterone; these were in the same direction as the changes in Io. The linearity of Jr in Δψ indicates the validity of analysis in terms of linear nonequilibrium thermodynamics—brief perturbations of Δψ appear to produce no significant effect on either the phenomenological coefficients or the free energy of the metabolic driving reaction. Hence it is possible to evaluate this free energy.
Full Text
The Full Text of this article is available as a PDF (737.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blumenthal R., Caplan S. R., Kedem O. The coupling of an enzymatic reaction to transmembrane flow of electric current in a synthetic "active transport" system. Biophys J. 2008 Dec 31;7(6):735–757. doi: 10.1016/S0006-3495(67)86620-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blumenthal R., Kedem O. Flux ratio and driving forces in a model of active transport. Biophys J. 1969 Mar;9(3):432–446. doi: 10.1016/S0006-3495(69)86395-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CRABBE J. Stimulation of active sodium transport by the isolated toad bladder with aldosterone in vitro. J Clin Invest. 1961 Nov;40:2103–2110. doi: 10.1172/JCI104436. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Civan M. M., Kedem O., Leaf A. Effect of vasopressin on toad bladder under conditions of zero net sodium transport. Am J Physiol. 1966 Sep;211(3):569–575. doi: 10.1152/ajplegacy.1966.211.3.569. [DOI] [PubMed] [Google Scholar]
- Davies R. E. On the mechanism of secretion of ions by gastric mucosa and by other tissues. Biochem J. 1950 Mar;46(3):324–333. doi: 10.1042/bj0460324. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Essig A., Caplan S. R. Energetics of active transport processes. Biophys J. 1968 Dec;8(12):1434–1457. doi: 10.1016/S0006-3495(68)86565-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HEINZ E., PATLAK C. S. Energy expenditure by active transport mechanisms. Biochim Biophys Acta. 1960 Nov 4;44:324–334. doi: 10.1016/0006-3002(60)91568-7. [DOI] [PubMed] [Google Scholar]
- Hoshiko T., Lindley B. D. Phenomenological description of active transport of salt and water. J Gen Physiol. 1967 Jan;50(3):729–758. doi: 10.1085/jgp.50.3.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kedem O., Essig A. Isotope flows and flux ratios in biological membranes. J Gen Physiol. 1965 Jul;48(6):1047–1070. doi: 10.1085/jgp.48.6.1047. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin D. W., Diamond J. M. Energetics of coupled active transport of sodium and chloride. J Gen Physiol. 1966 Nov;50(2):295–315. doi: 10.1085/jgp.50.2.295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nielsen R. The effect of aldosterone in vitro on the active sodium transport and moulting of the frog skin. Acta Physiol Scand. 1969 Sep-Oct;77(1):85–94. doi: 10.1111/j.1748-1716.1969.tb04555.x. [DOI] [PubMed] [Google Scholar]
- PATLAK C. S. Energy expenditure by active transport mechanisms. II. Further generalizations. Biophys J. 1961 May;1:419–427. doi: 10.1016/s0006-3495(61)86899-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PORTER G. A., EDELMAN I. S. THE ACTION OF ALDOSTERONE AND RELATED CORTICOSTEROIDS ON SODIUM TRANSPORT ACROSS THE TOAD BLADDER. J Clin Invest. 1964 Apr;43:611–620. doi: 10.1172/JCI104946. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SHARP G. W., LEAF A. BIOLOGICAL ACTION OF ALDOSTERONE IN VITRO. Nature. 1964 Jun 20;202:1185–1188. doi: 10.1038/2021185a0. [DOI] [PubMed] [Google Scholar]
- Sharp G. W., Coggins C. H., Lichtenstein N. S., Leaf A. Evidence for a mucosal effect of aldosterone on sodium transport in the toad bladder. J Clin Invest. 1966 Oct;45(10):1640–1647. doi: 10.1172/JCI105471. [DOI] [PMC free article] [PubMed] [Google Scholar]
- USSING H. H., ZERAHN K. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol Scand. 1951 Aug 25;23(2-3):110–127. doi: 10.1111/j.1748-1716.1951.tb00800.x. [DOI] [PubMed] [Google Scholar]
- Vieira F. L., Caplan S. R., Essig A. Energetics of sodium transport in frog skin. I. Oxygen consumption in the short-circuited state. J Gen Physiol. 1972 Jan;59(1):60–76. doi: 10.1085/jgp.59.1.60. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Voûte C. L., Dirix R., Nielsen R., Ussing H. H. The effect of aldosterone on the isolated frog skin epithelium (R. temporaria). Exp Cell Res. 1969 Oct;57(2):448–449. doi: 10.1016/0014-4827(69)90173-6. [DOI] [PubMed] [Google Scholar]
- ZERAHN K. Oxygen consumption and active sodium transport in the isolated and short-circuited frog skin. Acta Physiol Scand. 1956 May 31;36(4):300–318. doi: 10.1111/j.1748-1716.1956.tb01327.x. [DOI] [PubMed] [Google Scholar]