Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1972 Jan 1;59(1):1–21. doi: 10.1085/jgp.59.1.1

Dynamic Characteristics of Retinal Ganglion Cell Responses in Goldfish

Nico A M Schellart 1, Henk Spekreijse 1
PMCID: PMC2213787  PMID: 5007262

Abstract

A cross-correlation technique has been applied to quantify the dependence of the dynamic characteristics of retinal ganglion cell responses in goldfish on intensity, wavelength, spatial configuration, and spot size. Both theoretical and experimental evidence justify the use of the cross-correlation procedure which allows the completion of rather extensive measurements in a relatively short time. The findings indicate the following. (a) The shape of the amplitude characteristics depends on the energy per unit of time (power) falling within the center of a receptive field rather than on the intensity of the stimulus spot. For spot diameters of up to 1 mm, identical amplitude characteristics can be obtained by interchanging area and intensity. Therefore the receptor processes do not contribute to the change in the amplitude characteristics as a function of the power of the stimulus light. (b) For high frequencies the amplitude characteristics obtained as a function of power join together in a common envelope if plotted on an absolute sensitivity scale. For spontaneous ganglion cells this envelope holds over a range of three log units and the shape is identical for central and peripheral processes. (c) The amplitude characteristics of the central and peripheral processes converging to a ganglion cell are identical, irrespective of the sign (on or off) and the spectral coding of the response. Therefore we have no evidence for interneurons in the goldfish retina unique to the periphery of the receptive field.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baylor D. A., Fuortes M. G., O'Bryan P. M. Receptive fields of cones in the retina of the turtle. J Physiol. 1971 Apr;214(2):265–294. doi: 10.1113/jphysiol.1971.sp009432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. DE LANGE DZN H. Research into the dynamic nature of the human fovea-cortex systems with intermittent and modulated light. I. Attenuation characteristics with white and colored light. J Opt Soc Am. 1958 Nov;48(11):777–784. doi: 10.1364/josa.48.000777. [DOI] [PubMed] [Google Scholar]
  3. DE LANGE DZN H. Research into the dynamic nature of the human fovea-cortex systems with intermittent and modulated light. II. Phase shift in brithtness and delay in color perception. J Opt Soc Am. 1958 Nov;48(11):784–789. doi: 10.1364/josa.48.000784. [DOI] [PubMed] [Google Scholar]
  4. DENIER VAN DER GON J. J., STRACKEE J., VAN DER TWEEL L. H. A source for modulated light. Phys Med Biol. 1958 Oct;3(2):164–173. doi: 10.1088/0031-9155/3/2/306. [DOI] [PubMed] [Google Scholar]
  5. Daw N. W. Goldfish retina: organization for simultaneous color contrast. Science. 1967 Nov 17;158(3803):942–944. doi: 10.1126/science.158.3803.942. [DOI] [PubMed] [Google Scholar]
  6. Dowling J. E., Boycott B. B. Organization of the primate retina: electron microscopy. Proc R Soc Lond B Biol Sci. 1966 Nov 15;166(1002):80–111. doi: 10.1098/rspb.1966.0086. [DOI] [PubMed] [Google Scholar]
  7. Enroth-Cugell C., Robson J. G. The contrast sensitivity of retinal ganglion cells of the cat. J Physiol. 1966 Dec;187(3):517–552. doi: 10.1113/jphysiol.1966.sp008107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. FUORTES M. G., HODGKIN A. L. CHANGES IN TIME SCALE AND SENSITIVITY IN THE OMMATIDIA OF LIMULUS. J Physiol. 1964 Aug;172:239–263. doi: 10.1113/jphysiol.1964.sp007415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Green D. G. Sinusoidal flicker characteristics of the color-sensitive mechanisms of the eye. Vision Res. 1969 May;9(5):591–601. doi: 10.1016/0042-6989(69)90021-2. [DOI] [PubMed] [Google Scholar]
  10. Hughes G. W., Maffei L. Retinal ganglion cell response to sinusoidal light stimulation. J Neurophysiol. 1966 May;29(3):333–352. doi: 10.1152/jn.1966.29.3.333. [DOI] [PubMed] [Google Scholar]
  11. KELLY D. H. Effects of sharp edges in a flickering field. J Opt Soc Am. 1959 Jul;49(7):730–732. doi: 10.1364/josa.49.000730. [DOI] [PubMed] [Google Scholar]
  12. KELLY D. H. Visual response to time-dependent stimuli. I. Amplitude sensitivity measurements. J Opt Soc Am. 1961 Apr;51:422–429. doi: 10.1364/josa.51.000422. [DOI] [PubMed] [Google Scholar]
  13. KELLY D. H. Visual responses to time-dependent stimuli. IV. Effects of chromatic adaptation. J Opt Soc Am. 1962 Aug;52:940–947. doi: 10.1364/josa.52.000940. [DOI] [PubMed] [Google Scholar]
  14. Kaneko A. Physiological and morphological identification of horizontal, bipolar and amacrine cells in goldfish retina. J Physiol. 1970 May;207(3):623–633. doi: 10.1113/jphysiol.1970.sp009084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Knight B. W., Toyoda J. I., Dodge F. A., Jr A quantitative description of the dynamics of excitation and inhibition in the eye of Limulus. J Gen Physiol. 1970 Oct;56(4):421–437. doi: 10.1085/jgp.56.4.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kuiper J. W., Leutscher-Hazelhoff J. T. Linear and nonlinear responses from the compound eye of Calliphora erythrocephala. Cold Spring Harb Symp Quant Biol. 1965;30:419–428. doi: 10.1101/sqb.1965.030.01.041. [DOI] [PubMed] [Google Scholar]
  17. LEVINSON J., HARMON L. D. Studies with artificial neurons. III. Mechanisms of flicker-fusion. Kybernetik. 1961 Dec;1:107–117. doi: 10.1007/BF00290181. [DOI] [PubMed] [Google Scholar]
  18. LEVINSON J. NONLINEAR AND SPATIAL EFFECTS IN THE PERCEPTION OF FLICKER. Doc Ophthalmol. 1964;18:36–55. doi: 10.1007/BF00160562. [DOI] [PubMed] [Google Scholar]
  19. Liebman P. A., Entine G. Sensitive low-light-level microspectrophotometer: detection of photosensitive pigments of retinal cones. J Opt Soc Am. 1964 Dec;54(12):1451–1459. doi: 10.1364/josa.54.001451. [DOI] [PubMed] [Google Scholar]
  20. Maffei L., Cervetto L., Fiorentini A. Transfer characteristics of excitation and inhibition in cat retinal ganglion cells. J Neurophysiol. 1970 Mar;33(2):276–284. doi: 10.1152/jn.1970.33.2.276. [DOI] [PubMed] [Google Scholar]
  21. Marimont R. B. Numerical studies of the Fuortes-Hodgkin Limulus model. J Physiol. 1965 Aug;179(3):489–497. doi: 10.1113/jphysiol.1965.sp007675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Norton A. L., Spekreijse H., Wolbarsht M. L., Wagner H. G. Receptive field organization of the S-potential. Science. 1968 May 31;160(3831):1021–1022. doi: 10.1126/science.160.3831.1021. [DOI] [PubMed] [Google Scholar]
  23. Pinter R. B. Sinusoidal and delta function responses of visual cells of the Limulus eye. J Gen Physiol. 1966 Jan;49(3):565–593. doi: 10.1085/jgp.49.3.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ratliff F., Knight B. W., Graham N. On tuning and amplification by lateral inhibition. Proc Natl Acad Sci U S A. 1969 Mar;62(3):733–740. doi: 10.1073/pnas.62.3.733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Spekreijse H., Norton A. L. The dynamic characteristics of color-coded S-potentials. J Gen Physiol. 1970 Jul;56(1):1–15. doi: 10.1085/jgp.56.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Spekreijse H. Rectification in the goldfish retina: analysis by sinusoidal and auxiliary stimulation. Vision Res. 1969 Dec;9(12):1461–1472. doi: 10.1016/0042-6989(69)90062-5. [DOI] [PubMed] [Google Scholar]
  27. Spekreijse H., van den Berg T. J. Interaction between colour and spatial coded processes converging to retinal glanglion cells in goldfish. J Physiol. 1971 Jul;215(3):679–692. doi: 10.1113/jphysiol.1971.sp009491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sperling G., Sondhi M. M. Model for visual luminance discrimination and flicker detection. J Opt Soc Am. 1968 Aug;58(8):1133–1145. doi: 10.1364/josa.58.001133. [DOI] [PubMed] [Google Scholar]
  29. Tomita T., Kaneko A., Murakami M., Pautler E. L. Spectral response curves of single cones in the carp. Vision Res. 1967 Jul;7(7):519–531. doi: 10.1016/0042-6989(67)90061-2. [DOI] [PubMed] [Google Scholar]
  30. WALRAVEN P. L., LEEBEEK H. J. PHASE SHIFT OF SINUSOIDALLY ALTERNATING COLORED STIMULI. J Opt Soc Am. 1964 Jan;54:78–82. doi: 10.1364/josa.54.000078. [DOI] [PubMed] [Google Scholar]
  31. Wagner H. G., Macnichol E. F., Wolbarsht M. L. The Response Properties of Single Ganglion Cells in the Goldfish Retina. J Gen Physiol. 1960 Jul 1;43(6):45–62. doi: 10.1085/jgp.43.6.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. de Boer R., Kuyper P. Triggered correlation. IEEE Trans Biomed Eng. 1968 Jul;15(3):169–179. doi: 10.1109/tbme.1968.4502561. [DOI] [PubMed] [Google Scholar]
  33. van der TWEEL L. Some problems in vision regarded with respect to linearity and frequency response. Ann N Y Acad Sci. 1961 Jan 28;89:829–856. doi: 10.1111/j.1749-6632.1961.tb20181.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES