Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1982 Oct;152(1):201–207. doi: 10.1128/jb.152.1.201-207.1982

Pathway of lysine degradation in Fusobacterium nucleatum.

H A Barker, J M Kahn, L Hedrick
PMCID: PMC221392  PMID: 6811551

Abstract

Lysine was fermented by Fusobacterium nucleatum ATCC 25586 with the formation of about 1 mol each of acetate and butyrate. By the use of [1-14C]lysine or [6-14C]lysine, acetate and butyrate were shown to be derived from both ends of lysine, with acetate being formed preferentially from carbon atoms 1 and 2 and butyrate being formed preferentially from carbon atoms 3 to 6. This indicates that the lysine carbon chain is cleaved between both carbon atoms 2 and 3 and carbon atoms 4 and 5, with the former predominating [1-14C]acetate was also extensively incorporated into butyrate, preferentially into carbon atoms 3 and 4. Cell-free extracts of F. nucleatum were shown to catalyze the reactions of the 3-keto,5-aminohexanoate pathway of lysine degradation, previously described in lysine-fermenting clostridia. The 3-keto,5-aminohexanoate cleavage enzyme was partially purified and shown to have properties much like those of the clostridial enzyme. We conclude that both the pathway and the enzymes of lysine degradation are similar in F. nucleatum and lysine-fermenting clostridia.

Full text

PDF
201

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker J. J., Jeng I., Barker H. A. Purification and properties of L-erythro-3,5-diaminohexanoate dehydrogenase from a lysine-fermenting Clostridium. J Biol Chem. 1972 Dec 10;247(23):7724–7734. [PubMed] [Google Scholar]
  2. Baker J. J., van der Drift C., Stadtman T. C. Purification and properties of -lysine mutase, a pyridoxal phosphate and B 12 coenzyme dependent enzyme. Biochemistry. 1973 Mar 13;12(6):1054–1063. doi: 10.1021/bi00730a006. [DOI] [PubMed] [Google Scholar]
  3. Barker H. A. Amino acid degradation by anaerobic bacteria. Annu Rev Biochem. 1981;50:23–40. doi: 10.1146/annurev.bi.50.070181.000323. [DOI] [PubMed] [Google Scholar]
  4. Barker H. A., Jeng I. M., Neff N., Robertson J. M., Tam F. K., Hosaka S. Butyryl-CoA:acetoacetate CoA-transferase from a lysine-fermenting Clostridium. J Biol Chem. 1978 Feb 25;253(4):1219–1225. [PubMed] [Google Scholar]
  5. Barker H. A., Kahn J. M., Chew S. Enzymes involved in 3,5-diaminohexanoate degradation by Brevibacterium sp. J Bacteriol. 1980 Sep;143(3):1165–1170. doi: 10.1128/jb.143.3.1165-1170.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bozler G., Robertson J. M., Ohsugi M., Hensley C., Barker H. A. Metabolism of L-beta-lysine in a Pseudomonas: conversion of 6-N-acetyl-L-beta-lysine to 3-keto-6-acetamidohexanoate and of 4-aminobutyrate to succinic semialdehyde by different transaminases. Arch Biochem Biophys. 1979 Oct 1;197(1):226–235. doi: 10.1016/0003-9861(79)90240-6. [DOI] [PubMed] [Google Scholar]
  7. Buckel W., Barker H. A. Two pathways of glutamate fermentation by anaerobic bacteria. J Bacteriol. 1974 Mar;117(3):1248–1260. doi: 10.1128/jb.117.3.1248-1260.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chirpich T. P., Zappia V., Costilow R. N., Barker H. A. Lysine 2,3-aminomutase. Purification and properties of a pyridoxal phosphate and S-adenosylmethionine-activated enzyme. J Biol Chem. 1970 Apr 10;245(7):1778–1789. [PubMed] [Google Scholar]
  9. Costilow R. N., Rochovansky O. M., Barker H. A. Isolation and identification of beta-lysine as an intermediate in lysine fermentation. J Biol Chem. 1966 Apr 10;241(7):1573–1580. [PubMed] [Google Scholar]
  10. Hong S. L., Barker H. A. Aerobic metabolism of 3,5-diaminohexanoate in a Brevibacterium. Purification of 3,5-diaminohexanoate dehydrogenase and degradation of 3-keto-5-aminohexanoate. J Biol Chem. 1973 Jan 10;248(1):41–49. [PubMed] [Google Scholar]
  11. JACKINS H. C., BARKER H. A. Fermentative processes of the fusiform bacteria. J Bacteriol. 1951 Feb;61(2):101–114. doi: 10.1128/jb.61.2.101-114.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jeng I., Barker H. A. Purification and properties of l-3-aminobutyryl coenzyme A deaminase from a lysine-fermenting Clostridium. J Biol Chem. 1974 Oct 25;249(20):6578–6584. [PubMed] [Google Scholar]
  13. Lerud R. F., Whiteley H. R. Purification and properties of alpha-ketoglutarate reductase from Micrococcus aerogenes. J Bacteriol. 1971 May;106(2):571–577. doi: 10.1128/jb.106.2.571-577.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Loesche W. J., Gibbons R. J. Amino acid fermentation by Fusobacterium nucleatum. Arch Oral Biol. 1968 Feb;13(2):191–202. doi: 10.1016/0003-9969(68)90051-4. [DOI] [PubMed] [Google Scholar]
  15. MOSBACH E. H., PHARES E. F., CARSON S. F. Degradation of isotopically labeled citric, alpha-ketoglutaric and glutamic acids. Arch Biochem Biophys. 1951 Sep;33(2):179–185. doi: 10.1016/0003-9861(51)90095-1. [DOI] [PubMed] [Google Scholar]
  16. Ohsugi M., Kahn J., Hensley C., Chew S., Bozler G., Robertson J. M., Barker H. A. Metabolism of L-beta-lysine by a Pseudomonas: purification and properties of 3-keto-6-acetamidohexanoate cleavage enzyme. Arch Biochem Biophys. 1980 Aug;203(1):437–452. doi: 10.1016/0003-9861(80)90197-6. [DOI] [PubMed] [Google Scholar]
  17. PHARES E. F. Degradation of labeled propionic and acetic acids. Arch Biochem Biophys. 1951 Sep;33(2):173–178. doi: 10.1016/0003-9861(51)90094-x. [DOI] [PubMed] [Google Scholar]
  18. Stadtman T. C., Renz P. Anaerobic degradation of lysine. V. Some properties of the cobamide coenzyme-dependent beta-lysine mutase of Clostridium sticklandii. Arch Biochem Biophys. 1968 Apr;125(1):226–239. doi: 10.1016/0003-9861(68)90657-7. [DOI] [PubMed] [Google Scholar]
  19. Tsai L., Stadtman T. C. Anaerobic degradation of lysine. IV. Cobamide coenzyme-dependent migration of an amino group from carbon 6 of beta-lysine (3,6-diaminohexanoate) to carbon 5 forming a new naturally occurring amino acid, 3,5-diaminohexanoate. Arch Biochem Biophys. 1968 Apr;125(1):210–225. doi: 10.1016/0003-9861(68)90656-5. [DOI] [PubMed] [Google Scholar]
  20. WALKER P. G. A colorimetric method for the estimation of acetoacetate. Biochem J. 1954 Dec;58(4):699–704. doi: 10.1042/bj0580699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Yorifuji T., Jeng I. M., Barker H. A. Purification and properties of 3-keto-5-aminohexanoate cleavage enzyme from a lysine-fermenting Clostridium. J Biol Chem. 1977 Jan 10;252(1):20–31. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES